Engineered cost-effective growth of Co-based nanoflakes as a sustainable water oxidation electrocatalyst
Developing low-cost, scalable and reproducible synthesis methods for water oxidation reaction (WOR) catalysts is highly desirable and also challenging in energy, environmental and industrial applications. In this context, electrochemical deposition is known as an easy and cost-effective technique in...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2017-11, Vol.50 (47), p.475501 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 47 |
container_start_page | 475501 |
container_title | Journal of physics. D, Applied physics |
container_volume | 50 |
creator | Pourreza, M Naseri, N |
description | Developing low-cost, scalable and reproducible synthesis methods for water oxidation reaction (WOR) catalysts is highly desirable and also challenging in energy, environmental and industrial applications. In this context, electrochemical deposition is known as an easy and cost-effective technique in nanomaterial growth. Herein, cobalt-based nanoflakes were grown on a flexible and commercially available steel mesh substrate by electrodeposition approach with a crystalline structure as a mixture of oxide, hydroxide and oxyhydroxide phases. For the first time, the correlation between electrodeposition parameters, time and current density, and morphological characteristics of the grown nanoflakes (density and aspect ratio based on SEM results) has been derived. According to a comprehensive study of the flakes' electrocatalytic performance in WOR, the optimized sample fabricated with a moderate electrodeposition current density (7 mA cm−2) and duration time (2000 s) revealed the highest density (7.6 × 108 cm−2) and aspect ratio (7.1) as well as the lowest values for overpotential (OP = 324 mV) and charge transfer resistance (14 ). This designed array of Co-based nanoflakes also showed the lowest value of overpotential for bare cobalt-based WOR electrocatalysts reported yet. High and low values for deposition current density and/or deposition time had a negative effect on the sample surface, leaving some areas without any flakes or with incomplete and inefficient formation of nanoflakes with low densities and aspect ratios. A similar effect was observed for annealed samples in the range of 200-400 °C. Based on recorded overpotentials and extracted surface morphological parameters, a linear and logarithmic behavior in overpotential-flake density dependency was proposed for current density and time controlled systems, respectively. |
doi_str_mv | 10.1088/1361-6463/aa8e16 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6463_aa8e16</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>daa8e16</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-97517440ebd888931758061c1f88b22520b182d036bebad8f7603dbec878d1603</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKt3jzl5cu1ks_noUUr9gIIXPYfsZtJuXTclSa39791S8STCgxmG9x7Dj5BrBncMtJ4wLlkhK8kn1mpk8oSMfk-nZARQlgVXpTonFymtAUBIzUZkNe-XbY8Y0dEmpFyg99jk9hPpMoZdXtHg6SwUtU2Do7d98J19x0TtIJq2Kdu2t3WHdGczRhq-WmdzG3qK3dATQ2Oz7fYpX5Izb7uEVz9zTN4e5q-zp2Lx8vg8u18UDReQi6kSTFUVYO201lPOlNAgWcO81nVZihJqpksHXNZYW6e9ksBdjY1W2rFhHxM49jYxpBTRm01sP2zcGwbmQMocsJgDFnMkNURuj5E2bMw6bGM_PPif_eYPuzMCTKUGCQHMbJzn39gRd9I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Engineered cost-effective growth of Co-based nanoflakes as a sustainable water oxidation electrocatalyst</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Pourreza, M ; Naseri, N</creator><creatorcontrib>Pourreza, M ; Naseri, N</creatorcontrib><description>Developing low-cost, scalable and reproducible synthesis methods for water oxidation reaction (WOR) catalysts is highly desirable and also challenging in energy, environmental and industrial applications. In this context, electrochemical deposition is known as an easy and cost-effective technique in nanomaterial growth. Herein, cobalt-based nanoflakes were grown on a flexible and commercially available steel mesh substrate by electrodeposition approach with a crystalline structure as a mixture of oxide, hydroxide and oxyhydroxide phases. For the first time, the correlation between electrodeposition parameters, time and current density, and morphological characteristics of the grown nanoflakes (density and aspect ratio based on SEM results) has been derived. According to a comprehensive study of the flakes' electrocatalytic performance in WOR, the optimized sample fabricated with a moderate electrodeposition current density (7 mA cm−2) and duration time (2000 s) revealed the highest density (7.6 × 108 cm−2) and aspect ratio (7.1) as well as the lowest values for overpotential (OP = 324 mV) and charge transfer resistance (14 ). This designed array of Co-based nanoflakes also showed the lowest value of overpotential for bare cobalt-based WOR electrocatalysts reported yet. High and low values for deposition current density and/or deposition time had a negative effect on the sample surface, leaving some areas without any flakes or with incomplete and inefficient formation of nanoflakes with low densities and aspect ratios. A similar effect was observed for annealed samples in the range of 200-400 °C. Based on recorded overpotentials and extracted surface morphological parameters, a linear and logarithmic behavior in overpotential-flake density dependency was proposed for current density and time controlled systems, respectively.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/aa8e16</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>cobalt nanoflakes ; electrocatalyst performance ; morphological properties ; water oxidation</subject><ispartof>Journal of physics. D, Applied physics, 2017-11, Vol.50 (47), p.475501</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-97517440ebd888931758061c1f88b22520b182d036bebad8f7603dbec878d1603</citedby><cites>FETCH-LOGICAL-c350t-97517440ebd888931758061c1f88b22520b182d036bebad8f7603dbec878d1603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6463/aa8e16/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Pourreza, M</creatorcontrib><creatorcontrib>Naseri, N</creatorcontrib><title>Engineered cost-effective growth of Co-based nanoflakes as a sustainable water oxidation electrocatalyst</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>Developing low-cost, scalable and reproducible synthesis methods for water oxidation reaction (WOR) catalysts is highly desirable and also challenging in energy, environmental and industrial applications. In this context, electrochemical deposition is known as an easy and cost-effective technique in nanomaterial growth. Herein, cobalt-based nanoflakes were grown on a flexible and commercially available steel mesh substrate by electrodeposition approach with a crystalline structure as a mixture of oxide, hydroxide and oxyhydroxide phases. For the first time, the correlation between electrodeposition parameters, time and current density, and morphological characteristics of the grown nanoflakes (density and aspect ratio based on SEM results) has been derived. According to a comprehensive study of the flakes' electrocatalytic performance in WOR, the optimized sample fabricated with a moderate electrodeposition current density (7 mA cm−2) and duration time (2000 s) revealed the highest density (7.6 × 108 cm−2) and aspect ratio (7.1) as well as the lowest values for overpotential (OP = 324 mV) and charge transfer resistance (14 ). This designed array of Co-based nanoflakes also showed the lowest value of overpotential for bare cobalt-based WOR electrocatalysts reported yet. High and low values for deposition current density and/or deposition time had a negative effect on the sample surface, leaving some areas without any flakes or with incomplete and inefficient formation of nanoflakes with low densities and aspect ratios. A similar effect was observed for annealed samples in the range of 200-400 °C. Based on recorded overpotentials and extracted surface morphological parameters, a linear and logarithmic behavior in overpotential-flake density dependency was proposed for current density and time controlled systems, respectively.</description><subject>cobalt nanoflakes</subject><subject>electrocatalyst performance</subject><subject>morphological properties</subject><subject>water oxidation</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWKt3jzl5cu1ks_noUUr9gIIXPYfsZtJuXTclSa39791S8STCgxmG9x7Dj5BrBncMtJ4wLlkhK8kn1mpk8oSMfk-nZARQlgVXpTonFymtAUBIzUZkNe-XbY8Y0dEmpFyg99jk9hPpMoZdXtHg6SwUtU2Do7d98J19x0TtIJq2Kdu2t3WHdGczRhq-WmdzG3qK3dATQ2Oz7fYpX5Izb7uEVz9zTN4e5q-zp2Lx8vg8u18UDReQi6kSTFUVYO201lPOlNAgWcO81nVZihJqpksHXNZYW6e9ksBdjY1W2rFhHxM49jYxpBTRm01sP2zcGwbmQMocsJgDFnMkNURuj5E2bMw6bGM_PPif_eYPuzMCTKUGCQHMbJzn39gRd9I</recordid><startdate>20171129</startdate><enddate>20171129</enddate><creator>Pourreza, M</creator><creator>Naseri, N</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171129</creationdate><title>Engineered cost-effective growth of Co-based nanoflakes as a sustainable water oxidation electrocatalyst</title><author>Pourreza, M ; Naseri, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-97517440ebd888931758061c1f88b22520b182d036bebad8f7603dbec878d1603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>cobalt nanoflakes</topic><topic>electrocatalyst performance</topic><topic>morphological properties</topic><topic>water oxidation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pourreza, M</creatorcontrib><creatorcontrib>Naseri, N</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pourreza, M</au><au>Naseri, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered cost-effective growth of Co-based nanoflakes as a sustainable water oxidation electrocatalyst</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2017-11-29</date><risdate>2017</risdate><volume>50</volume><issue>47</issue><spage>475501</spage><pages>475501-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>Developing low-cost, scalable and reproducible synthesis methods for water oxidation reaction (WOR) catalysts is highly desirable and also challenging in energy, environmental and industrial applications. In this context, electrochemical deposition is known as an easy and cost-effective technique in nanomaterial growth. Herein, cobalt-based nanoflakes were grown on a flexible and commercially available steel mesh substrate by electrodeposition approach with a crystalline structure as a mixture of oxide, hydroxide and oxyhydroxide phases. For the first time, the correlation between electrodeposition parameters, time and current density, and morphological characteristics of the grown nanoflakes (density and aspect ratio based on SEM results) has been derived. According to a comprehensive study of the flakes' electrocatalytic performance in WOR, the optimized sample fabricated with a moderate electrodeposition current density (7 mA cm−2) and duration time (2000 s) revealed the highest density (7.6 × 108 cm−2) and aspect ratio (7.1) as well as the lowest values for overpotential (OP = 324 mV) and charge transfer resistance (14 ). This designed array of Co-based nanoflakes also showed the lowest value of overpotential for bare cobalt-based WOR electrocatalysts reported yet. High and low values for deposition current density and/or deposition time had a negative effect on the sample surface, leaving some areas without any flakes or with incomplete and inefficient formation of nanoflakes with low densities and aspect ratios. A similar effect was observed for annealed samples in the range of 200-400 °C. Based on recorded overpotentials and extracted surface morphological parameters, a linear and logarithmic behavior in overpotential-flake density dependency was proposed for current density and time controlled systems, respectively.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/aa8e16</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3727 |
ispartof | Journal of physics. D, Applied physics, 2017-11, Vol.50 (47), p.475501 |
issn | 0022-3727 1361-6463 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6463_aa8e16 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | cobalt nanoflakes electrocatalyst performance morphological properties water oxidation |
title | Engineered cost-effective growth of Co-based nanoflakes as a sustainable water oxidation electrocatalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20cost-effective%20growth%20of%20Co-based%20nanoflakes%20as%20a%20sustainable%20water%20oxidation%20electrocatalyst&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Pourreza,%20M&rft.date=2017-11-29&rft.volume=50&rft.issue=47&rft.spage=475501&rft.pages=475501-&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/aa8e16&rft_dat=%3Ciop_cross%3Edaa8e16%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |