Structure and transport properties of La1−xSrxMnO3 granular ceramics

Two granular ceramics were prepared by spark plasma sintering (SPS) at 600-800 °C and classical ceramic sintering (CCS) at 900 °C using molten salt synthesized nanoparticles of the composition La0.53Sr0.47MnO3 and   40 nm size. Extensive study of the structural, magnetic, and electric transport prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2017-01, Vol.50 (7)
Hauptverfasser: Jirák, Zden k, Hirschner, Jan, Kaman, Ond ej, Kní ek, Karel, Levinský, Petr, Maryško, Miroslav, Hejtmánek, Ji í
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Journal of physics. D, Applied physics
container_volume 50
creator Jirák, Zden k
Hirschner, Jan
Kaman, Ond ej
Kní ek, Karel
Levinský, Petr
Maryško, Miroslav
Hejtmánek, Ji í
description Two granular ceramics were prepared by spark plasma sintering (SPS) at 600-800 °C and classical ceramic sintering (CCS) at 900 °C using molten salt synthesized nanoparticles of the composition La0.53Sr0.47MnO3 and   40 nm size. Extensive study of the structural, magnetic, and electric transport properties showed that the SPS and CCS products essentially retain the two-phase magnetic structure of the starting nanoparticles, which consist of a ferromagnetic (FM) core and an A-type antiferromagnetic (AFM) shell. After the sintering, the AFM phase forms a 10-15 nm thick spacer between neighbouring FM granules, which represents a barrier for the transmission of spin-polarized eg carriers. This assembly retains reasonable conductivity down to the lowest temperatures, without marked localization, and it still gives rise to a large negative magnetoresistance, which is treated theoretically in terms of low- and high-field positive magnetoconductance. In a detailed analysis of these low-field magnetoconductance (LFMC) and high-field magnetoconductance (HFMC) effects, which are related to the field-induced alignment of the FM granules and spin canting in the AFM matrix, respectively, we conclude that the bulk conductivity is governed by resonant tunnelling, i.e. the second-order transmission via Mn4+ sites in the intergranular space. The experimental data on the SPS product confirm the theoretically predicted scaling of the LFMC effect with squared reduced magnetization, and also provide also a quantitative comparison between the linear coefficient of the HFMC and the high-field paraprocess seen in the magnetization measurement.
doi_str_mv 10.1088/1361-6463/aa54e7
format Article
fullrecord <record><control><sourceid>iop</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6463_aa54e7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>daa54e7</sourcerecordid><originalsourceid>FETCH-LOGICAL-i192t-a867e281d518e994a7fe46bceaa6778d081e97f4c74ffbfb920ef0d1c572a9d03</originalsourceid><addsrcrecordid>eNo9kM1KxDAcxIMoWFfvHvMA1s1X83GUxVWhsofVc_g3TaTL2pYkhX0Ezz6iT-KWFU8DwzDDbxC6peSeEq2XlEtaSiH5EqASXp2h4t86RwUhjJVcMXWJrlLaEUIqqWmB1tscJ5en6DH0Lc4R-jQOMeMxDqOPufMJDwHXQH--vg_beHjtNxx_HGPTHiJ2PsJn59I1ugiwT_7mTxfoff34tnou683Ty-qhLjtqWC5BS-WZpm1FtTdGgApeyMZ5AKmUbomm3qggnBIhNKExjPhAWuoqxcC0hC_Q3am3G0a7G6bYH9csJXb-wM7Adga2pw_4Ly8RUXI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structure and transport properties of La1−xSrxMnO3 granular ceramics</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Jirák, Zden k ; Hirschner, Jan ; Kaman, Ond ej ; Kní ek, Karel ; Levinský, Petr ; Maryško, Miroslav ; Hejtmánek, Ji í</creator><creatorcontrib>Jirák, Zden k ; Hirschner, Jan ; Kaman, Ond ej ; Kní ek, Karel ; Levinský, Petr ; Maryško, Miroslav ; Hejtmánek, Ji í</creatorcontrib><description>Two granular ceramics were prepared by spark plasma sintering (SPS) at 600-800 °C and classical ceramic sintering (CCS) at 900 °C using molten salt synthesized nanoparticles of the composition La0.53Sr0.47MnO3 and   40 nm size. Extensive study of the structural, magnetic, and electric transport properties showed that the SPS and CCS products essentially retain the two-phase magnetic structure of the starting nanoparticles, which consist of a ferromagnetic (FM) core and an A-type antiferromagnetic (AFM) shell. After the sintering, the AFM phase forms a 10-15 nm thick spacer between neighbouring FM granules, which represents a barrier for the transmission of spin-polarized eg carriers. This assembly retains reasonable conductivity down to the lowest temperatures, without marked localization, and it still gives rise to a large negative magnetoresistance, which is treated theoretically in terms of low- and high-field positive magnetoconductance. In a detailed analysis of these low-field magnetoconductance (LFMC) and high-field magnetoconductance (HFMC) effects, which are related to the field-induced alignment of the FM granules and spin canting in the AFM matrix, respectively, we conclude that the bulk conductivity is governed by resonant tunnelling, i.e. the second-order transmission via Mn4+ sites in the intergranular space. The experimental data on the SPS product confirm the theoretically predicted scaling of the LFMC effect with squared reduced magnetization, and also provide also a quantitative comparison between the linear coefficient of the HFMC and the high-field paraprocess seen in the magnetization measurement.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/aa54e7</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>magnetic nanoparticles ; perovskite manganite ; tunnelling magnetoresistance</subject><ispartof>Journal of physics. D, Applied physics, 2017-01, Vol.50 (7)</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6463/aa54e7/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Jirák, Zden k</creatorcontrib><creatorcontrib>Hirschner, Jan</creatorcontrib><creatorcontrib>Kaman, Ond ej</creatorcontrib><creatorcontrib>Kní ek, Karel</creatorcontrib><creatorcontrib>Levinský, Petr</creatorcontrib><creatorcontrib>Maryško, Miroslav</creatorcontrib><creatorcontrib>Hejtmánek, Ji í</creatorcontrib><title>Structure and transport properties of La1−xSrxMnO3 granular ceramics</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>Two granular ceramics were prepared by spark plasma sintering (SPS) at 600-800 °C and classical ceramic sintering (CCS) at 900 °C using molten salt synthesized nanoparticles of the composition La0.53Sr0.47MnO3 and   40 nm size. Extensive study of the structural, magnetic, and electric transport properties showed that the SPS and CCS products essentially retain the two-phase magnetic structure of the starting nanoparticles, which consist of a ferromagnetic (FM) core and an A-type antiferromagnetic (AFM) shell. After the sintering, the AFM phase forms a 10-15 nm thick spacer between neighbouring FM granules, which represents a barrier for the transmission of spin-polarized eg carriers. This assembly retains reasonable conductivity down to the lowest temperatures, without marked localization, and it still gives rise to a large negative magnetoresistance, which is treated theoretically in terms of low- and high-field positive magnetoconductance. In a detailed analysis of these low-field magnetoconductance (LFMC) and high-field magnetoconductance (HFMC) effects, which are related to the field-induced alignment of the FM granules and spin canting in the AFM matrix, respectively, we conclude that the bulk conductivity is governed by resonant tunnelling, i.e. the second-order transmission via Mn4+ sites in the intergranular space. The experimental data on the SPS product confirm the theoretically predicted scaling of the LFMC effect with squared reduced magnetization, and also provide also a quantitative comparison between the linear coefficient of the HFMC and the high-field paraprocess seen in the magnetization measurement.</description><subject>magnetic nanoparticles</subject><subject>perovskite manganite</subject><subject>tunnelling magnetoresistance</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kM1KxDAcxIMoWFfvHvMA1s1X83GUxVWhsofVc_g3TaTL2pYkhX0Ezz6iT-KWFU8DwzDDbxC6peSeEq2XlEtaSiH5EqASXp2h4t86RwUhjJVcMXWJrlLaEUIqqWmB1tscJ5en6DH0Lc4R-jQOMeMxDqOPufMJDwHXQH--vg_beHjtNxx_HGPTHiJ2PsJn59I1ugiwT_7mTxfoff34tnou683Ty-qhLjtqWC5BS-WZpm1FtTdGgApeyMZ5AKmUbomm3qggnBIhNKExjPhAWuoqxcC0hC_Q3am3G0a7G6bYH9csJXb-wM7Adga2pw_4Ly8RUXI</recordid><startdate>20170123</startdate><enddate>20170123</enddate><creator>Jirák, Zden k</creator><creator>Hirschner, Jan</creator><creator>Kaman, Ond ej</creator><creator>Kní ek, Karel</creator><creator>Levinský, Petr</creator><creator>Maryško, Miroslav</creator><creator>Hejtmánek, Ji í</creator><general>IOP Publishing</general><scope/></search><sort><creationdate>20170123</creationdate><title>Structure and transport properties of La1−xSrxMnO3 granular ceramics</title><author>Jirák, Zden k ; Hirschner, Jan ; Kaman, Ond ej ; Kní ek, Karel ; Levinský, Petr ; Maryško, Miroslav ; Hejtmánek, Ji í</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i192t-a867e281d518e994a7fe46bceaa6778d081e97f4c74ffbfb920ef0d1c572a9d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>magnetic nanoparticles</topic><topic>perovskite manganite</topic><topic>tunnelling magnetoresistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jirák, Zden k</creatorcontrib><creatorcontrib>Hirschner, Jan</creatorcontrib><creatorcontrib>Kaman, Ond ej</creatorcontrib><creatorcontrib>Kní ek, Karel</creatorcontrib><creatorcontrib>Levinský, Petr</creatorcontrib><creatorcontrib>Maryško, Miroslav</creatorcontrib><creatorcontrib>Hejtmánek, Ji í</creatorcontrib><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jirák, Zden k</au><au>Hirschner, Jan</au><au>Kaman, Ond ej</au><au>Kní ek, Karel</au><au>Levinský, Petr</au><au>Maryško, Miroslav</au><au>Hejtmánek, Ji í</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and transport properties of La1−xSrxMnO3 granular ceramics</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2017-01-23</date><risdate>2017</risdate><volume>50</volume><issue>7</issue><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>Two granular ceramics were prepared by spark plasma sintering (SPS) at 600-800 °C and classical ceramic sintering (CCS) at 900 °C using molten salt synthesized nanoparticles of the composition La0.53Sr0.47MnO3 and   40 nm size. Extensive study of the structural, magnetic, and electric transport properties showed that the SPS and CCS products essentially retain the two-phase magnetic structure of the starting nanoparticles, which consist of a ferromagnetic (FM) core and an A-type antiferromagnetic (AFM) shell. After the sintering, the AFM phase forms a 10-15 nm thick spacer between neighbouring FM granules, which represents a barrier for the transmission of spin-polarized eg carriers. This assembly retains reasonable conductivity down to the lowest temperatures, without marked localization, and it still gives rise to a large negative magnetoresistance, which is treated theoretically in terms of low- and high-field positive magnetoconductance. In a detailed analysis of these low-field magnetoconductance (LFMC) and high-field magnetoconductance (HFMC) effects, which are related to the field-induced alignment of the FM granules and spin canting in the AFM matrix, respectively, we conclude that the bulk conductivity is governed by resonant tunnelling, i.e. the second-order transmission via Mn4+ sites in the intergranular space. The experimental data on the SPS product confirm the theoretically predicted scaling of the LFMC effect with squared reduced magnetization, and also provide also a quantitative comparison between the linear coefficient of the HFMC and the high-field paraprocess seen in the magnetization measurement.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/aa54e7</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3727
ispartof Journal of physics. D, Applied physics, 2017-01, Vol.50 (7)
issn 0022-3727
1361-6463
language eng
recordid cdi_iop_journals_10_1088_1361_6463_aa54e7
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects magnetic nanoparticles
perovskite manganite
tunnelling magnetoresistance
title Structure and transport properties of La1−xSrxMnO3 granular ceramics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A10%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20transport%20properties%20of%20La1%E2%88%92xSrxMnO3%20granular%20ceramics&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Jir%C3%A1k,%20Zden%20k&rft.date=2017-01-23&rft.volume=50&rft.issue=7&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/aa54e7&rft_dat=%3Ciop%3Edaa54e7%3C/iop%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true