Structure and transport properties of La1−xSrxMnO3 granular ceramics
Two granular ceramics were prepared by spark plasma sintering (SPS) at 600-800 °C and classical ceramic sintering (CCS) at 900 °C using molten salt synthesized nanoparticles of the composition La0.53Sr0.47MnO3 and 40 nm size. Extensive study of the structural, magnetic, and electric transport prop...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2017-01, Vol.50 (7) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Journal of physics. D, Applied physics |
container_volume | 50 |
creator | Jirák, Zden k Hirschner, Jan Kaman, Ond ej Kní ek, Karel Levinský, Petr Maryško, Miroslav Hejtmánek, Ji í |
description | Two granular ceramics were prepared by spark plasma sintering (SPS) at 600-800 °C and classical ceramic sintering (CCS) at 900 °C using molten salt synthesized nanoparticles of the composition La0.53Sr0.47MnO3 and 40 nm size. Extensive study of the structural, magnetic, and electric transport properties showed that the SPS and CCS products essentially retain the two-phase magnetic structure of the starting nanoparticles, which consist of a ferromagnetic (FM) core and an A-type antiferromagnetic (AFM) shell. After the sintering, the AFM phase forms a 10-15 nm thick spacer between neighbouring FM granules, which represents a barrier for the transmission of spin-polarized eg carriers. This assembly retains reasonable conductivity down to the lowest temperatures, without marked localization, and it still gives rise to a large negative magnetoresistance, which is treated theoretically in terms of low- and high-field positive magnetoconductance. In a detailed analysis of these low-field magnetoconductance (LFMC) and high-field magnetoconductance (HFMC) effects, which are related to the field-induced alignment of the FM granules and spin canting in the AFM matrix, respectively, we conclude that the bulk conductivity is governed by resonant tunnelling, i.e. the second-order transmission via Mn4+ sites in the intergranular space. The experimental data on the SPS product confirm the theoretically predicted scaling of the LFMC effect with squared reduced magnetization, and also provide also a quantitative comparison between the linear coefficient of the HFMC and the high-field paraprocess seen in the magnetization measurement. |
doi_str_mv | 10.1088/1361-6463/aa54e7 |
format | Article |
fullrecord | <record><control><sourceid>iop</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6463_aa54e7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>daa54e7</sourcerecordid><originalsourceid>FETCH-LOGICAL-i192t-a867e281d518e994a7fe46bceaa6778d081e97f4c74ffbfb920ef0d1c572a9d03</originalsourceid><addsrcrecordid>eNo9kM1KxDAcxIMoWFfvHvMA1s1X83GUxVWhsofVc_g3TaTL2pYkhX0Ezz6iT-KWFU8DwzDDbxC6peSeEq2XlEtaSiH5EqASXp2h4t86RwUhjJVcMXWJrlLaEUIqqWmB1tscJ5en6DH0Lc4R-jQOMeMxDqOPufMJDwHXQH--vg_beHjtNxx_HGPTHiJ2PsJn59I1ugiwT_7mTxfoff34tnou683Ty-qhLjtqWC5BS-WZpm1FtTdGgApeyMZ5AKmUbomm3qggnBIhNKExjPhAWuoqxcC0hC_Q3am3G0a7G6bYH9csJXb-wM7Adga2pw_4Ly8RUXI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structure and transport properties of La1−xSrxMnO3 granular ceramics</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Jirák, Zden k ; Hirschner, Jan ; Kaman, Ond ej ; Kní ek, Karel ; Levinský, Petr ; Maryško, Miroslav ; Hejtmánek, Ji í</creator><creatorcontrib>Jirák, Zden k ; Hirschner, Jan ; Kaman, Ond ej ; Kní ek, Karel ; Levinský, Petr ; Maryško, Miroslav ; Hejtmánek, Ji í</creatorcontrib><description>Two granular ceramics were prepared by spark plasma sintering (SPS) at 600-800 °C and classical ceramic sintering (CCS) at 900 °C using molten salt synthesized nanoparticles of the composition La0.53Sr0.47MnO3 and 40 nm size. Extensive study of the structural, magnetic, and electric transport properties showed that the SPS and CCS products essentially retain the two-phase magnetic structure of the starting nanoparticles, which consist of a ferromagnetic (FM) core and an A-type antiferromagnetic (AFM) shell. After the sintering, the AFM phase forms a 10-15 nm thick spacer between neighbouring FM granules, which represents a barrier for the transmission of spin-polarized eg carriers. This assembly retains reasonable conductivity down to the lowest temperatures, without marked localization, and it still gives rise to a large negative magnetoresistance, which is treated theoretically in terms of low- and high-field positive magnetoconductance. In a detailed analysis of these low-field magnetoconductance (LFMC) and high-field magnetoconductance (HFMC) effects, which are related to the field-induced alignment of the FM granules and spin canting in the AFM matrix, respectively, we conclude that the bulk conductivity is governed by resonant tunnelling, i.e. the second-order transmission via Mn4+ sites in the intergranular space. The experimental data on the SPS product confirm the theoretically predicted scaling of the LFMC effect with squared reduced magnetization, and also provide also a quantitative comparison between the linear coefficient of the HFMC and the high-field paraprocess seen in the magnetization measurement.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/aa54e7</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>magnetic nanoparticles ; perovskite manganite ; tunnelling magnetoresistance</subject><ispartof>Journal of physics. D, Applied physics, 2017-01, Vol.50 (7)</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6463/aa54e7/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Jirák, Zden k</creatorcontrib><creatorcontrib>Hirschner, Jan</creatorcontrib><creatorcontrib>Kaman, Ond ej</creatorcontrib><creatorcontrib>Kní ek, Karel</creatorcontrib><creatorcontrib>Levinský, Petr</creatorcontrib><creatorcontrib>Maryško, Miroslav</creatorcontrib><creatorcontrib>Hejtmánek, Ji í</creatorcontrib><title>Structure and transport properties of La1−xSrxMnO3 granular ceramics</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>Two granular ceramics were prepared by spark plasma sintering (SPS) at 600-800 °C and classical ceramic sintering (CCS) at 900 °C using molten salt synthesized nanoparticles of the composition La0.53Sr0.47MnO3 and 40 nm size. Extensive study of the structural, magnetic, and electric transport properties showed that the SPS and CCS products essentially retain the two-phase magnetic structure of the starting nanoparticles, which consist of a ferromagnetic (FM) core and an A-type antiferromagnetic (AFM) shell. After the sintering, the AFM phase forms a 10-15 nm thick spacer between neighbouring FM granules, which represents a barrier for the transmission of spin-polarized eg carriers. This assembly retains reasonable conductivity down to the lowest temperatures, without marked localization, and it still gives rise to a large negative magnetoresistance, which is treated theoretically in terms of low- and high-field positive magnetoconductance. In a detailed analysis of these low-field magnetoconductance (LFMC) and high-field magnetoconductance (HFMC) effects, which are related to the field-induced alignment of the FM granules and spin canting in the AFM matrix, respectively, we conclude that the bulk conductivity is governed by resonant tunnelling, i.e. the second-order transmission via Mn4+ sites in the intergranular space. The experimental data on the SPS product confirm the theoretically predicted scaling of the LFMC effect with squared reduced magnetization, and also provide also a quantitative comparison between the linear coefficient of the HFMC and the high-field paraprocess seen in the magnetization measurement.</description><subject>magnetic nanoparticles</subject><subject>perovskite manganite</subject><subject>tunnelling magnetoresistance</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kM1KxDAcxIMoWFfvHvMA1s1X83GUxVWhsofVc_g3TaTL2pYkhX0Ezz6iT-KWFU8DwzDDbxC6peSeEq2XlEtaSiH5EqASXp2h4t86RwUhjJVcMXWJrlLaEUIqqWmB1tscJ5en6DH0Lc4R-jQOMeMxDqOPufMJDwHXQH--vg_beHjtNxx_HGPTHiJ2PsJn59I1ugiwT_7mTxfoff34tnou683Ty-qhLjtqWC5BS-WZpm1FtTdGgApeyMZ5AKmUbomm3qggnBIhNKExjPhAWuoqxcC0hC_Q3am3G0a7G6bYH9csJXb-wM7Adga2pw_4Ly8RUXI</recordid><startdate>20170123</startdate><enddate>20170123</enddate><creator>Jirák, Zden k</creator><creator>Hirschner, Jan</creator><creator>Kaman, Ond ej</creator><creator>Kní ek, Karel</creator><creator>Levinský, Petr</creator><creator>Maryško, Miroslav</creator><creator>Hejtmánek, Ji í</creator><general>IOP Publishing</general><scope/></search><sort><creationdate>20170123</creationdate><title>Structure and transport properties of La1−xSrxMnO3 granular ceramics</title><author>Jirák, Zden k ; Hirschner, Jan ; Kaman, Ond ej ; Kní ek, Karel ; Levinský, Petr ; Maryško, Miroslav ; Hejtmánek, Ji í</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i192t-a867e281d518e994a7fe46bceaa6778d081e97f4c74ffbfb920ef0d1c572a9d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>magnetic nanoparticles</topic><topic>perovskite manganite</topic><topic>tunnelling magnetoresistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jirák, Zden k</creatorcontrib><creatorcontrib>Hirschner, Jan</creatorcontrib><creatorcontrib>Kaman, Ond ej</creatorcontrib><creatorcontrib>Kní ek, Karel</creatorcontrib><creatorcontrib>Levinský, Petr</creatorcontrib><creatorcontrib>Maryško, Miroslav</creatorcontrib><creatorcontrib>Hejtmánek, Ji í</creatorcontrib><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jirák, Zden k</au><au>Hirschner, Jan</au><au>Kaman, Ond ej</au><au>Kní ek, Karel</au><au>Levinský, Petr</au><au>Maryško, Miroslav</au><au>Hejtmánek, Ji í</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and transport properties of La1−xSrxMnO3 granular ceramics</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2017-01-23</date><risdate>2017</risdate><volume>50</volume><issue>7</issue><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>Two granular ceramics were prepared by spark plasma sintering (SPS) at 600-800 °C and classical ceramic sintering (CCS) at 900 °C using molten salt synthesized nanoparticles of the composition La0.53Sr0.47MnO3 and 40 nm size. Extensive study of the structural, magnetic, and electric transport properties showed that the SPS and CCS products essentially retain the two-phase magnetic structure of the starting nanoparticles, which consist of a ferromagnetic (FM) core and an A-type antiferromagnetic (AFM) shell. After the sintering, the AFM phase forms a 10-15 nm thick spacer between neighbouring FM granules, which represents a barrier for the transmission of spin-polarized eg carriers. This assembly retains reasonable conductivity down to the lowest temperatures, without marked localization, and it still gives rise to a large negative magnetoresistance, which is treated theoretically in terms of low- and high-field positive magnetoconductance. In a detailed analysis of these low-field magnetoconductance (LFMC) and high-field magnetoconductance (HFMC) effects, which are related to the field-induced alignment of the FM granules and spin canting in the AFM matrix, respectively, we conclude that the bulk conductivity is governed by resonant tunnelling, i.e. the second-order transmission via Mn4+ sites in the intergranular space. The experimental data on the SPS product confirm the theoretically predicted scaling of the LFMC effect with squared reduced magnetization, and also provide also a quantitative comparison between the linear coefficient of the HFMC and the high-field paraprocess seen in the magnetization measurement.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/aa54e7</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3727 |
ispartof | Journal of physics. D, Applied physics, 2017-01, Vol.50 (7) |
issn | 0022-3727 1361-6463 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6463_aa54e7 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | magnetic nanoparticles perovskite manganite tunnelling magnetoresistance |
title | Structure and transport properties of La1−xSrxMnO3 granular ceramics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A10%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20transport%20properties%20of%20La1%E2%88%92xSrxMnO3%20granular%20ceramics&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Jir%C3%A1k,%20Zden%20k&rft.date=2017-01-23&rft.volume=50&rft.issue=7&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/aa54e7&rft_dat=%3Ciop%3Edaa54e7%3C/iop%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |