Design and implementation of differential MEMS microphones using the two polysilicon processes for SNR enhancement
This study presents the design, fabrication and testing of the capacitive-type MEMS microphone with differential sensing electrodes to improve the sensitivity and signal-to-noise ratio (SNR). The microphone is designed and implemented based on an existing trench-refilled MOSBE process platform with...
Gespeichert in:
Veröffentlicht in: | Journal of micromechanics and microengineering 2020-05, Vol.30 (5), p.55006 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 55006 |
container_title | Journal of micromechanics and microengineering |
container_volume | 30 |
creator | Lo, Sung-Cheng Chan, Chun-Kai Wu, Mingching Fang, Weileun |
description | This study presents the design, fabrication and testing of the capacitive-type MEMS microphone with differential sensing electrodes to improve the sensitivity and signal-to-noise ratio (SNR). The microphone is designed and implemented based on an existing trench-refilled MOSBE process platform with two polysilicon structure layers, one Si3N4 electrical isolation layer and two sacrificial SiO2 layers. The microphone consists of top and bottom diaphragms and backplates. The top diaphragm and bottom backplate form a sensing electrode pair, and the bottom diaphragm and top backplate form the second sensing electrode pair. Moreover, the Si3N4 layer is exploited to partition the structures into three different electrical regions. Thus, the differential sensing MEMS microphone is achieved by using only two polysilicon structure layers. Various auxiliary components such as the central post and the U-shaped springs are also developed to realize the differential microphone. Measurements show that the typical fabricated microphone with a footprint of 800 μm diameter has the single-ended sensitivities of −45.8 and −47.2 dB (ref: 1 V/1 Pa), and the SNR is over 52 dB. Moreover, the ±3 dB bandwidth of the microphone ranges from 50 Hz-22 kHz. In summary, the presented microphone has the differential sensitivity of −40.5 dB (ref: 1 V/1 Pa) and the SNR of over 57.8 dB. |
doi_str_mv | 10.1088/1361-6439/ab7786 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6439_ab7786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmmab7786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-d07006f3fe3c0cf125a390b770c15bb3a8f23ebc2bea0306a22b4d0b47a0160e3</originalsourceid><addsrcrecordid>eNp9kEFLAzEUhIMoWKt3j7l5ce3LppvdHqW2KrQKVs8hySZtym6yJFuk_97Uiifx9GCYGeZ9CF0TuCNQVSNCGcnYmE5GQpZlxU7Q4Fc6RQOYMMgIJeU5uohxC0BIRaoBCg862rXDwtXYtl2jW-160VvvsDe4tsbokBQrGrycLVe4tSr4buOdjngXrVvjfqNx_-lx55t9tI1VKdoFr3SMyWN8wKuXN6zdRjj13X6Jzoxoor76uUP0MZ-9T5-yxevj8_R-kSlK8j6roQRghhpNFShD8kLQCaTfQJFCSioqk1MtVS61AApM5Lkc1yDHpQDCQNMhgmNvWhxj0IZ3wbYi7DkBfmDGD4D4ARA_MkuR22PE-o5v_S64NPA_-80f9m3bcgq84FAU6QPe1YZ-AUaOfIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design and implementation of differential MEMS microphones using the two polysilicon processes for SNR enhancement</title><source>Institute of Physics Journals</source><creator>Lo, Sung-Cheng ; Chan, Chun-Kai ; Wu, Mingching ; Fang, Weileun</creator><creatorcontrib>Lo, Sung-Cheng ; Chan, Chun-Kai ; Wu, Mingching ; Fang, Weileun</creatorcontrib><description>This study presents the design, fabrication and testing of the capacitive-type MEMS microphone with differential sensing electrodes to improve the sensitivity and signal-to-noise ratio (SNR). The microphone is designed and implemented based on an existing trench-refilled MOSBE process platform with two polysilicon structure layers, one Si3N4 electrical isolation layer and two sacrificial SiO2 layers. The microphone consists of top and bottom diaphragms and backplates. The top diaphragm and bottom backplate form a sensing electrode pair, and the bottom diaphragm and top backplate form the second sensing electrode pair. Moreover, the Si3N4 layer is exploited to partition the structures into three different electrical regions. Thus, the differential sensing MEMS microphone is achieved by using only two polysilicon structure layers. Various auxiliary components such as the central post and the U-shaped springs are also developed to realize the differential microphone. Measurements show that the typical fabricated microphone with a footprint of 800 μm diameter has the single-ended sensitivities of −45.8 and −47.2 dB (ref: 1 V/1 Pa), and the SNR is over 52 dB. Moreover, the ±3 dB bandwidth of the microphone ranges from 50 Hz-22 kHz. In summary, the presented microphone has the differential sensitivity of −40.5 dB (ref: 1 V/1 Pa) and the SNR of over 57.8 dB.</description><identifier>ISSN: 0960-1317</identifier><identifier>EISSN: 1361-6439</identifier><identifier>DOI: 10.1088/1361-6439/ab7786</identifier><identifier>CODEN: JMMIEZ</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>condenser microphone ; differential sensing ; gap-closing ; trench-refilled ; two polysilicon fabrication processes</subject><ispartof>Journal of micromechanics and microengineering, 2020-05, Vol.30 (5), p.55006</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-d07006f3fe3c0cf125a390b770c15bb3a8f23ebc2bea0306a22b4d0b47a0160e3</citedby><cites>FETCH-LOGICAL-c312t-d07006f3fe3c0cf125a390b770c15bb3a8f23ebc2bea0306a22b4d0b47a0160e3</cites><orcidid>0000-0002-3309-0407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6439/ab7786/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,53844,53891</link.rule.ids></links><search><creatorcontrib>Lo, Sung-Cheng</creatorcontrib><creatorcontrib>Chan, Chun-Kai</creatorcontrib><creatorcontrib>Wu, Mingching</creatorcontrib><creatorcontrib>Fang, Weileun</creatorcontrib><title>Design and implementation of differential MEMS microphones using the two polysilicon processes for SNR enhancement</title><title>Journal of micromechanics and microengineering</title><addtitle>JMM</addtitle><addtitle>J. Micromech. Microeng</addtitle><description>This study presents the design, fabrication and testing of the capacitive-type MEMS microphone with differential sensing electrodes to improve the sensitivity and signal-to-noise ratio (SNR). The microphone is designed and implemented based on an existing trench-refilled MOSBE process platform with two polysilicon structure layers, one Si3N4 electrical isolation layer and two sacrificial SiO2 layers. The microphone consists of top and bottom diaphragms and backplates. The top diaphragm and bottom backplate form a sensing electrode pair, and the bottom diaphragm and top backplate form the second sensing electrode pair. Moreover, the Si3N4 layer is exploited to partition the structures into three different electrical regions. Thus, the differential sensing MEMS microphone is achieved by using only two polysilicon structure layers. Various auxiliary components such as the central post and the U-shaped springs are also developed to realize the differential microphone. Measurements show that the typical fabricated microphone with a footprint of 800 μm diameter has the single-ended sensitivities of −45.8 and −47.2 dB (ref: 1 V/1 Pa), and the SNR is over 52 dB. Moreover, the ±3 dB bandwidth of the microphone ranges from 50 Hz-22 kHz. In summary, the presented microphone has the differential sensitivity of −40.5 dB (ref: 1 V/1 Pa) and the SNR of over 57.8 dB.</description><subject>condenser microphone</subject><subject>differential sensing</subject><subject>gap-closing</subject><subject>trench-refilled</subject><subject>two polysilicon fabrication processes</subject><issn>0960-1317</issn><issn>1361-6439</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEUhIMoWKt3j7l5ce3LppvdHqW2KrQKVs8hySZtym6yJFuk_97Uiifx9GCYGeZ9CF0TuCNQVSNCGcnYmE5GQpZlxU7Q4Fc6RQOYMMgIJeU5uohxC0BIRaoBCg862rXDwtXYtl2jW-160VvvsDe4tsbokBQrGrycLVe4tSr4buOdjngXrVvjfqNx_-lx55t9tI1VKdoFr3SMyWN8wKuXN6zdRjj13X6Jzoxoor76uUP0MZ-9T5-yxevj8_R-kSlK8j6roQRghhpNFShD8kLQCaTfQJFCSioqk1MtVS61AApM5Lkc1yDHpQDCQNMhgmNvWhxj0IZ3wbYi7DkBfmDGD4D4ARA_MkuR22PE-o5v_S64NPA_-80f9m3bcgq84FAU6QPe1YZ-AUaOfIY</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Lo, Sung-Cheng</creator><creator>Chan, Chun-Kai</creator><creator>Wu, Mingching</creator><creator>Fang, Weileun</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3309-0407</orcidid></search><sort><creationdate>20200501</creationdate><title>Design and implementation of differential MEMS microphones using the two polysilicon processes for SNR enhancement</title><author>Lo, Sung-Cheng ; Chan, Chun-Kai ; Wu, Mingching ; Fang, Weileun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-d07006f3fe3c0cf125a390b770c15bb3a8f23ebc2bea0306a22b4d0b47a0160e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>condenser microphone</topic><topic>differential sensing</topic><topic>gap-closing</topic><topic>trench-refilled</topic><topic>two polysilicon fabrication processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lo, Sung-Cheng</creatorcontrib><creatorcontrib>Chan, Chun-Kai</creatorcontrib><creatorcontrib>Wu, Mingching</creatorcontrib><creatorcontrib>Fang, Weileun</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of micromechanics and microengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lo, Sung-Cheng</au><au>Chan, Chun-Kai</au><au>Wu, Mingching</au><au>Fang, Weileun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and implementation of differential MEMS microphones using the two polysilicon processes for SNR enhancement</atitle><jtitle>Journal of micromechanics and microengineering</jtitle><stitle>JMM</stitle><addtitle>J. Micromech. Microeng</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>30</volume><issue>5</issue><spage>55006</spage><pages>55006-</pages><issn>0960-1317</issn><eissn>1361-6439</eissn><coden>JMMIEZ</coden><abstract>This study presents the design, fabrication and testing of the capacitive-type MEMS microphone with differential sensing electrodes to improve the sensitivity and signal-to-noise ratio (SNR). The microphone is designed and implemented based on an existing trench-refilled MOSBE process platform with two polysilicon structure layers, one Si3N4 electrical isolation layer and two sacrificial SiO2 layers. The microphone consists of top and bottom diaphragms and backplates. The top diaphragm and bottom backplate form a sensing electrode pair, and the bottom diaphragm and top backplate form the second sensing electrode pair. Moreover, the Si3N4 layer is exploited to partition the structures into three different electrical regions. Thus, the differential sensing MEMS microphone is achieved by using only two polysilicon structure layers. Various auxiliary components such as the central post and the U-shaped springs are also developed to realize the differential microphone. Measurements show that the typical fabricated microphone with a footprint of 800 μm diameter has the single-ended sensitivities of −45.8 and −47.2 dB (ref: 1 V/1 Pa), and the SNR is over 52 dB. Moreover, the ±3 dB bandwidth of the microphone ranges from 50 Hz-22 kHz. In summary, the presented microphone has the differential sensitivity of −40.5 dB (ref: 1 V/1 Pa) and the SNR of over 57.8 dB.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6439/ab7786</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3309-0407</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1317 |
ispartof | Journal of micromechanics and microengineering, 2020-05, Vol.30 (5), p.55006 |
issn | 0960-1317 1361-6439 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6439_ab7786 |
source | Institute of Physics Journals |
subjects | condenser microphone differential sensing gap-closing trench-refilled two polysilicon fabrication processes |
title | Design and implementation of differential MEMS microphones using the two polysilicon processes for SNR enhancement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20implementation%20of%20differential%20MEMS%20microphones%20using%20the%20two%20polysilicon%20processes%20for%20SNR%20enhancement&rft.jtitle=Journal%20of%20micromechanics%20and%20microengineering&rft.au=Lo,%20Sung-Cheng&rft.date=2020-05-01&rft.volume=30&rft.issue=5&rft.spage=55006&rft.pages=55006-&rft.issn=0960-1317&rft.eissn=1361-6439&rft.coden=JMMIEZ&rft_id=info:doi/10.1088/1361-6439/ab7786&rft_dat=%3Ciop_cross%3Ejmmab7786%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |