Uniqueness and numerical inversion in the time-domain fluorescence diffuse optical tomography

This work considers the time-domain fluorescence diffuse optical tomography (FDOT). We recover the distribution of fluorophores in biological tissue by the boundary measurements. With the Laplace transform and the knowledge of complex analysis, we build the uniqueness theorem of this inverse problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inverse problems 2022-10, Vol.38 (10), p.104001
Hauptverfasser: Sun, Chunlong, Zhang, Zhidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work considers the time-domain fluorescence diffuse optical tomography (FDOT). We recover the distribution of fluorophores in biological tissue by the boundary measurements. With the Laplace transform and the knowledge of complex analysis, we build the uniqueness theorem of this inverse problem. After that, the numerical inversions are considered. We introduce an iterative inversion algorithm under the framework of regularizing scheme, then give several numerical examples in three-dimensional space illustrating the performance of the proposed inversion schemes.
ISSN:0266-5611
1361-6420
DOI:10.1088/1361-6420/ac88f3