Uniqueness and numerical inversion in the time-domain fluorescence diffuse optical tomography
This work considers the time-domain fluorescence diffuse optical tomography (FDOT). We recover the distribution of fluorophores in biological tissue by the boundary measurements. With the Laplace transform and the knowledge of complex analysis, we build the uniqueness theorem of this inverse problem...
Gespeichert in:
Veröffentlicht in: | Inverse problems 2022-10, Vol.38 (10), p.104001 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work considers the time-domain fluorescence diffuse optical tomography (FDOT). We recover the distribution of fluorophores in biological tissue by the boundary measurements. With the Laplace transform and the knowledge of complex analysis, we build the uniqueness theorem of this inverse problem. After that, the numerical inversions are considered. We introduce an iterative inversion algorithm under the framework of regularizing scheme, then give several numerical examples in three-dimensional space illustrating the performance of the proposed inversion schemes. |
---|---|
ISSN: | 0266-5611 1361-6420 |
DOI: | 10.1088/1361-6420/ac88f3 |