Compton scattering tomography in translational geometries

Here we present new L2 injectivity results for 2D and 3D Compton scattering tomography (CST) problems in translational geometries. The results are proven through the explicit inversion of a new toric section and apple Radon transform, which describe novel 2D and 3D acquisition geometries in CST. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inverse problems 2020-02, Vol.36 (2), p.25007
Hauptverfasser: Webber, James, Miller, Eric L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 25007
container_title Inverse problems
container_volume 36
creator Webber, James
Miller, Eric L
description Here we present new L2 injectivity results for 2D and 3D Compton scattering tomography (CST) problems in translational geometries. The results are proven through the explicit inversion of a new toric section and apple Radon transform, which describe novel 2D and 3D acquisition geometries in CST. The geometry considered has potential applications in airport baggage screening and threat detection. We also present a generalization of our injectivity results in 3D to Radon transforms which describe the integrals of the charge density over the surfaces of revolution of a class of C1 curves.
doi_str_mv 10.1088/1361-6420/ab4a32
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6420_ab4a32</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ipab4a32</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-d3f4d14f8b7f8968e41aea5288cdc8eaca02bf8602ac532e49bc52ff95520cc3</originalsourceid><addsrcrecordid>eNp1j71PwzAUxC0EEqWwM2ZiIvQ9O3adEVV8SZVYulsvjl1cNXFkm4H_nlZFTDCddLo73Y-xW4QHBK0XKBTWquGwoK4hwc_Y7Nc6ZzPgStVSIV6yq5x3AIgalzPWruIwlThW2VIpLoVxW5U4xG2i6eOrCmNVEo15TyXEkfbV1sXBlRRcvmYXnvbZ3fzonG2enzar13r9_vK2elzXViCWuhe-6bHxult63SrtGiRHkmtte6sdWQLeea2Ak5WCu6btrOTet1JysFbMGZxmbYo5J-fNlMJA6csgmCO5OWKaI6Y5kR8qd6dKiJPZxc90OJ5NmIxQhhvgEmBppt4fgvd_BP_d_QbPMmgv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Compton scattering tomography in translational geometries</title><source>Institute of Physics Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Webber, James ; Miller, Eric L</creator><creatorcontrib>Webber, James ; Miller, Eric L</creatorcontrib><description>Here we present new L2 injectivity results for 2D and 3D Compton scattering tomography (CST) problems in translational geometries. The results are proven through the explicit inversion of a new toric section and apple Radon transform, which describe novel 2D and 3D acquisition geometries in CST. The geometry considered has potential applications in airport baggage screening and threat detection. We also present a generalization of our injectivity results in 3D to Radon transforms which describe the integrals of the charge density over the surfaces of revolution of a class of C1 curves.</description><identifier>ISSN: 0266-5611</identifier><identifier>EISSN: 1361-6420</identifier><identifier>DOI: 10.1088/1361-6420/ab4a32</identifier><identifier>CODEN: INPEEY</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Compton scattering ; tomography ; Volterra integral transforms</subject><ispartof>Inverse problems, 2020-02, Vol.36 (2), p.25007</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-d3f4d14f8b7f8968e41aea5288cdc8eaca02bf8602ac532e49bc52ff95520cc3</citedby><cites>FETCH-LOGICAL-c311t-d3f4d14f8b7f8968e41aea5288cdc8eaca02bf8602ac532e49bc52ff95520cc3</cites><orcidid>0000-0002-6774-2119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6420/ab4a32/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Webber, James</creatorcontrib><creatorcontrib>Miller, Eric L</creatorcontrib><title>Compton scattering tomography in translational geometries</title><title>Inverse problems</title><addtitle>IP</addtitle><addtitle>Inverse Problems</addtitle><description>Here we present new L2 injectivity results for 2D and 3D Compton scattering tomography (CST) problems in translational geometries. The results are proven through the explicit inversion of a new toric section and apple Radon transform, which describe novel 2D and 3D acquisition geometries in CST. The geometry considered has potential applications in airport baggage screening and threat detection. We also present a generalization of our injectivity results in 3D to Radon transforms which describe the integrals of the charge density over the surfaces of revolution of a class of C1 curves.</description><subject>Compton scattering</subject><subject>tomography</subject><subject>Volterra integral transforms</subject><issn>0266-5611</issn><issn>1361-6420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1j71PwzAUxC0EEqWwM2ZiIvQ9O3adEVV8SZVYulsvjl1cNXFkm4H_nlZFTDCddLo73Y-xW4QHBK0XKBTWquGwoK4hwc_Y7Nc6ZzPgStVSIV6yq5x3AIgalzPWruIwlThW2VIpLoVxW5U4xG2i6eOrCmNVEo15TyXEkfbV1sXBlRRcvmYXnvbZ3fzonG2enzar13r9_vK2elzXViCWuhe-6bHxult63SrtGiRHkmtte6sdWQLeea2Ak5WCu6btrOTet1JysFbMGZxmbYo5J-fNlMJA6csgmCO5OWKaI6Y5kR8qd6dKiJPZxc90OJ5NmIxQhhvgEmBppt4fgvd_BP_d_QbPMmgv</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Webber, James</creator><creator>Miller, Eric L</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6774-2119</orcidid></search><sort><creationdate>20200201</creationdate><title>Compton scattering tomography in translational geometries</title><author>Webber, James ; Miller, Eric L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-d3f4d14f8b7f8968e41aea5288cdc8eaca02bf8602ac532e49bc52ff95520cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Compton scattering</topic><topic>tomography</topic><topic>Volterra integral transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Webber, James</creatorcontrib><creatorcontrib>Miller, Eric L</creatorcontrib><collection>CrossRef</collection><jtitle>Inverse problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Webber, James</au><au>Miller, Eric L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compton scattering tomography in translational geometries</atitle><jtitle>Inverse problems</jtitle><stitle>IP</stitle><addtitle>Inverse Problems</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>36</volume><issue>2</issue><spage>25007</spage><pages>25007-</pages><issn>0266-5611</issn><eissn>1361-6420</eissn><coden>INPEEY</coden><abstract>Here we present new L2 injectivity results for 2D and 3D Compton scattering tomography (CST) problems in translational geometries. The results are proven through the explicit inversion of a new toric section and apple Radon transform, which describe novel 2D and 3D acquisition geometries in CST. The geometry considered has potential applications in airport baggage screening and threat detection. We also present a generalization of our injectivity results in 3D to Radon transforms which describe the integrals of the charge density over the surfaces of revolution of a class of C1 curves.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6420/ab4a32</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6774-2119</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0266-5611
ispartof Inverse problems, 2020-02, Vol.36 (2), p.25007
issn 0266-5611
1361-6420
language eng
recordid cdi_iop_journals_10_1088_1361_6420_ab4a32
source Institute of Physics Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Compton scattering
tomography
Volterra integral transforms
title Compton scattering tomography in translational geometries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A05%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compton%20scattering%20tomography%20in%20translational%20geometries&rft.jtitle=Inverse%20problems&rft.au=Webber,%20James&rft.date=2020-02-01&rft.volume=36&rft.issue=2&rft.spage=25007&rft.pages=25007-&rft.issn=0266-5611&rft.eissn=1361-6420&rft.coden=INPEEY&rft_id=info:doi/10.1088/1361-6420/ab4a32&rft_dat=%3Ciop_cross%3Eipab4a32%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true