Compton scattering tomography in translational geometries
Here we present new L2 injectivity results for 2D and 3D Compton scattering tomography (CST) problems in translational geometries. The results are proven through the explicit inversion of a new toric section and apple Radon transform, which describe novel 2D and 3D acquisition geometries in CST. The...
Gespeichert in:
Veröffentlicht in: | Inverse problems 2020-02, Vol.36 (2), p.25007 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 25007 |
container_title | Inverse problems |
container_volume | 36 |
creator | Webber, James Miller, Eric L |
description | Here we present new L2 injectivity results for 2D and 3D Compton scattering tomography (CST) problems in translational geometries. The results are proven through the explicit inversion of a new toric section and apple Radon transform, which describe novel 2D and 3D acquisition geometries in CST. The geometry considered has potential applications in airport baggage screening and threat detection. We also present a generalization of our injectivity results in 3D to Radon transforms which describe the integrals of the charge density over the surfaces of revolution of a class of C1 curves. |
doi_str_mv | 10.1088/1361-6420/ab4a32 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6420_ab4a32</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ipab4a32</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-d3f4d14f8b7f8968e41aea5288cdc8eaca02bf8602ac532e49bc52ff95520cc3</originalsourceid><addsrcrecordid>eNp1j71PwzAUxC0EEqWwM2ZiIvQ9O3adEVV8SZVYulsvjl1cNXFkm4H_nlZFTDCddLo73Y-xW4QHBK0XKBTWquGwoK4hwc_Y7Nc6ZzPgStVSIV6yq5x3AIgalzPWruIwlThW2VIpLoVxW5U4xG2i6eOrCmNVEo15TyXEkfbV1sXBlRRcvmYXnvbZ3fzonG2enzar13r9_vK2elzXViCWuhe-6bHxult63SrtGiRHkmtte6sdWQLeea2Ak5WCu6btrOTet1JysFbMGZxmbYo5J-fNlMJA6csgmCO5OWKaI6Y5kR8qd6dKiJPZxc90OJ5NmIxQhhvgEmBppt4fgvd_BP_d_QbPMmgv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Compton scattering tomography in translational geometries</title><source>Institute of Physics Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Webber, James ; Miller, Eric L</creator><creatorcontrib>Webber, James ; Miller, Eric L</creatorcontrib><description>Here we present new L2 injectivity results for 2D and 3D Compton scattering tomography (CST) problems in translational geometries. The results are proven through the explicit inversion of a new toric section and apple Radon transform, which describe novel 2D and 3D acquisition geometries in CST. The geometry considered has potential applications in airport baggage screening and threat detection. We also present a generalization of our injectivity results in 3D to Radon transforms which describe the integrals of the charge density over the surfaces of revolution of a class of C1 curves.</description><identifier>ISSN: 0266-5611</identifier><identifier>EISSN: 1361-6420</identifier><identifier>DOI: 10.1088/1361-6420/ab4a32</identifier><identifier>CODEN: INPEEY</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Compton scattering ; tomography ; Volterra integral transforms</subject><ispartof>Inverse problems, 2020-02, Vol.36 (2), p.25007</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-d3f4d14f8b7f8968e41aea5288cdc8eaca02bf8602ac532e49bc52ff95520cc3</citedby><cites>FETCH-LOGICAL-c311t-d3f4d14f8b7f8968e41aea5288cdc8eaca02bf8602ac532e49bc52ff95520cc3</cites><orcidid>0000-0002-6774-2119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6420/ab4a32/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Webber, James</creatorcontrib><creatorcontrib>Miller, Eric L</creatorcontrib><title>Compton scattering tomography in translational geometries</title><title>Inverse problems</title><addtitle>IP</addtitle><addtitle>Inverse Problems</addtitle><description>Here we present new L2 injectivity results for 2D and 3D Compton scattering tomography (CST) problems in translational geometries. The results are proven through the explicit inversion of a new toric section and apple Radon transform, which describe novel 2D and 3D acquisition geometries in CST. The geometry considered has potential applications in airport baggage screening and threat detection. We also present a generalization of our injectivity results in 3D to Radon transforms which describe the integrals of the charge density over the surfaces of revolution of a class of C1 curves.</description><subject>Compton scattering</subject><subject>tomography</subject><subject>Volterra integral transforms</subject><issn>0266-5611</issn><issn>1361-6420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1j71PwzAUxC0EEqWwM2ZiIvQ9O3adEVV8SZVYulsvjl1cNXFkm4H_nlZFTDCddLo73Y-xW4QHBK0XKBTWquGwoK4hwc_Y7Nc6ZzPgStVSIV6yq5x3AIgalzPWruIwlThW2VIpLoVxW5U4xG2i6eOrCmNVEo15TyXEkfbV1sXBlRRcvmYXnvbZ3fzonG2enzar13r9_vK2elzXViCWuhe-6bHxult63SrtGiRHkmtte6sdWQLeea2Ak5WCu6btrOTet1JysFbMGZxmbYo5J-fNlMJA6csgmCO5OWKaI6Y5kR8qd6dKiJPZxc90OJ5NmIxQhhvgEmBppt4fgvd_BP_d_QbPMmgv</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Webber, James</creator><creator>Miller, Eric L</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6774-2119</orcidid></search><sort><creationdate>20200201</creationdate><title>Compton scattering tomography in translational geometries</title><author>Webber, James ; Miller, Eric L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-d3f4d14f8b7f8968e41aea5288cdc8eaca02bf8602ac532e49bc52ff95520cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Compton scattering</topic><topic>tomography</topic><topic>Volterra integral transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Webber, James</creatorcontrib><creatorcontrib>Miller, Eric L</creatorcontrib><collection>CrossRef</collection><jtitle>Inverse problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Webber, James</au><au>Miller, Eric L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compton scattering tomography in translational geometries</atitle><jtitle>Inverse problems</jtitle><stitle>IP</stitle><addtitle>Inverse Problems</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>36</volume><issue>2</issue><spage>25007</spage><pages>25007-</pages><issn>0266-5611</issn><eissn>1361-6420</eissn><coden>INPEEY</coden><abstract>Here we present new L2 injectivity results for 2D and 3D Compton scattering tomography (CST) problems in translational geometries. The results are proven through the explicit inversion of a new toric section and apple Radon transform, which describe novel 2D and 3D acquisition geometries in CST. The geometry considered has potential applications in airport baggage screening and threat detection. We also present a generalization of our injectivity results in 3D to Radon transforms which describe the integrals of the charge density over the surfaces of revolution of a class of C1 curves.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6420/ab4a32</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6774-2119</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-5611 |
ispartof | Inverse problems, 2020-02, Vol.36 (2), p.25007 |
issn | 0266-5611 1361-6420 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6420_ab4a32 |
source | Institute of Physics Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Compton scattering tomography Volterra integral transforms |
title | Compton scattering tomography in translational geometries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A05%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compton%20scattering%20tomography%20in%20translational%20geometries&rft.jtitle=Inverse%20problems&rft.au=Webber,%20James&rft.date=2020-02-01&rft.volume=36&rft.issue=2&rft.spage=25007&rft.pages=25007-&rft.issn=0266-5611&rft.eissn=1361-6420&rft.coden=INPEEY&rft_id=info:doi/10.1088/1361-6420/ab4a32&rft_dat=%3Ciop_cross%3Eipab4a32%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |