Adaptive reconstruction for electrical impedance tomography with a piecewise constant conductivity
In this work we propose and analyze a numerical method for electrical impedance tomography to recover a piecewise constant conductivity from boundary voltage measurements. It is based on standard Tikhonov regularization with a Modica-Mortola penalty functional and adaptive mesh refinement using suit...
Gespeichert in:
Veröffentlicht in: | Inverse problems 2020-01, Vol.36 (1), p.14003 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we propose and analyze a numerical method for electrical impedance tomography to recover a piecewise constant conductivity from boundary voltage measurements. It is based on standard Tikhonov regularization with a Modica-Mortola penalty functional and adaptive mesh refinement using suitable a posteriori error estimators of residual type that involve the state, adjoint and variational inequality in the necessary optimality condition and a separate marking strategy. We prove the convergence of the adaptive algorithm in the following sense: the sequence of discrete solutions contains a subsequence convergent to a solution of the continuous necessary optimality system. Several numerical examples are presented to illustrate the convergence behavior of the algorithm. |
---|---|
ISSN: | 0266-5611 1361-6420 |
DOI: | 10.1088/1361-6420/ab261e |