A new approach to identification of input-driven dynamical systems from probability densities
Evolution of probability densities generated by many practical dynamical systems can be more conveniently observed than individual point trajectories. This paper introduces a new method to reconstruct the unknown transformation of a 1D discrete-time dynamical system that is driven by an external con...
Gespeichert in:
Veröffentlicht in: | Inverse problems 2018-08, Vol.34 (8), p.85004 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 85004 |
container_title | Inverse problems |
container_volume | 34 |
creator | Nie, Xiaokai Birkin, Mark Luo, Jingjing |
description | Evolution of probability densities generated by many practical dynamical systems can be more conveniently observed than individual point trajectories. This paper introduces a new method to reconstruct the unknown transformation of a 1D discrete-time dynamical system that is driven by an external control input with a given probability density function, using multiple sequences of converging probability densities generated by the perturbed underlying system. Regardless of different initial conditions the generated densities are demonstrated possessing strong convergence to a unique invariant density. Numerical simulation results validate the applicability of the developed algorithm as well as the performance in the presence of stochastic noise. |
doi_str_mv | 10.1088/1361-6420/aac533 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6420_aac533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ipaac533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-ff795250be66a9f073b2cd20e8ff69056bcb27addac7935106009eaf38164de63</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMoWFfvHvMDrDtJtml7XBa_YMGLHiWk-cAsbVKSrNJ_b5eKN08DM-_zMjwI3RK4J9A0a8I4KfmGwlpKVTF2hoq_1TkqgHJeVpyQS3SV0gGAkIbUBfrYYm--sRzHGKT6xDlgp43PzjolswseB4udH4-51NF9GY_15OUwH3ucppTNkLCNYcAz38nO9S5PeC5ILjuTrtGFlX0yN79zhd4fH952z-X-9ellt92XijaQS2vrtqIVdIZz2VqoWUeVpmAaa3kLFe9UR2uptVR1yyoCHKA10rKG8I02nK0QLL0qhpSisWKMbpBxEgTESY84uRAnF2LRMyN3C-LCKA7hGP384P_xH_u7aEE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A new approach to identification of input-driven dynamical systems from probability densities</title><source>Institute of Physics Journals</source><creator>Nie, Xiaokai ; Birkin, Mark ; Luo, Jingjing</creator><creatorcontrib>Nie, Xiaokai ; Birkin, Mark ; Luo, Jingjing</creatorcontrib><description>Evolution of probability densities generated by many practical dynamical systems can be more conveniently observed than individual point trajectories. This paper introduces a new method to reconstruct the unknown transformation of a 1D discrete-time dynamical system that is driven by an external control input with a given probability density function, using multiple sequences of converging probability densities generated by the perturbed underlying system. Regardless of different initial conditions the generated densities are demonstrated possessing strong convergence to a unique invariant density. Numerical simulation results validate the applicability of the developed algorithm as well as the performance in the presence of stochastic noise.</description><identifier>ISSN: 0266-5611</identifier><identifier>EISSN: 1361-6420</identifier><identifier>DOI: 10.1088/1361-6420/aac533</identifier><identifier>CODEN: INPEEY</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>asymptotic stability ; inverse problem ; nonlinear dynamical systems ; probability density functions ; semi-Markov map</subject><ispartof>Inverse problems, 2018-08, Vol.34 (8), p.85004</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-ff795250be66a9f073b2cd20e8ff69056bcb27addac7935106009eaf38164de63</citedby><cites>FETCH-LOGICAL-c280t-ff795250be66a9f073b2cd20e8ff69056bcb27addac7935106009eaf38164de63</cites><orcidid>0000-0002-2357-2947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6420/aac533/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Nie, Xiaokai</creatorcontrib><creatorcontrib>Birkin, Mark</creatorcontrib><creatorcontrib>Luo, Jingjing</creatorcontrib><title>A new approach to identification of input-driven dynamical systems from probability densities</title><title>Inverse problems</title><addtitle>IP</addtitle><addtitle>Inverse Problems</addtitle><description>Evolution of probability densities generated by many practical dynamical systems can be more conveniently observed than individual point trajectories. This paper introduces a new method to reconstruct the unknown transformation of a 1D discrete-time dynamical system that is driven by an external control input with a given probability density function, using multiple sequences of converging probability densities generated by the perturbed underlying system. Regardless of different initial conditions the generated densities are demonstrated possessing strong convergence to a unique invariant density. Numerical simulation results validate the applicability of the developed algorithm as well as the performance in the presence of stochastic noise.</description><subject>asymptotic stability</subject><subject>inverse problem</subject><subject>nonlinear dynamical systems</subject><subject>probability density functions</subject><subject>semi-Markov map</subject><issn>0266-5611</issn><issn>1361-6420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMoWFfvHvMDrDtJtml7XBa_YMGLHiWk-cAsbVKSrNJ_b5eKN08DM-_zMjwI3RK4J9A0a8I4KfmGwlpKVTF2hoq_1TkqgHJeVpyQS3SV0gGAkIbUBfrYYm--sRzHGKT6xDlgp43PzjolswseB4udH4-51NF9GY_15OUwH3ucppTNkLCNYcAz38nO9S5PeC5ILjuTrtGFlX0yN79zhd4fH952z-X-9ellt92XijaQS2vrtqIVdIZz2VqoWUeVpmAaa3kLFe9UR2uptVR1yyoCHKA10rKG8I02nK0QLL0qhpSisWKMbpBxEgTESY84uRAnF2LRMyN3C-LCKA7hGP384P_xH_u7aEE</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Nie, Xiaokai</creator><creator>Birkin, Mark</creator><creator>Luo, Jingjing</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2357-2947</orcidid></search><sort><creationdate>20180801</creationdate><title>A new approach to identification of input-driven dynamical systems from probability densities</title><author>Nie, Xiaokai ; Birkin, Mark ; Luo, Jingjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-ff795250be66a9f073b2cd20e8ff69056bcb27addac7935106009eaf38164de63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>asymptotic stability</topic><topic>inverse problem</topic><topic>nonlinear dynamical systems</topic><topic>probability density functions</topic><topic>semi-Markov map</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Xiaokai</creatorcontrib><creatorcontrib>Birkin, Mark</creatorcontrib><creatorcontrib>Luo, Jingjing</creatorcontrib><collection>CrossRef</collection><jtitle>Inverse problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Xiaokai</au><au>Birkin, Mark</au><au>Luo, Jingjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new approach to identification of input-driven dynamical systems from probability densities</atitle><jtitle>Inverse problems</jtitle><stitle>IP</stitle><addtitle>Inverse Problems</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>34</volume><issue>8</issue><spage>85004</spage><pages>85004-</pages><issn>0266-5611</issn><eissn>1361-6420</eissn><coden>INPEEY</coden><abstract>Evolution of probability densities generated by many practical dynamical systems can be more conveniently observed than individual point trajectories. This paper introduces a new method to reconstruct the unknown transformation of a 1D discrete-time dynamical system that is driven by an external control input with a given probability density function, using multiple sequences of converging probability densities generated by the perturbed underlying system. Regardless of different initial conditions the generated densities are demonstrated possessing strong convergence to a unique invariant density. Numerical simulation results validate the applicability of the developed algorithm as well as the performance in the presence of stochastic noise.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6420/aac533</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-2357-2947</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-5611 |
ispartof | Inverse problems, 2018-08, Vol.34 (8), p.85004 |
issn | 0266-5611 1361-6420 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6420_aac533 |
source | Institute of Physics Journals |
subjects | asymptotic stability inverse problem nonlinear dynamical systems probability density functions semi-Markov map |
title | A new approach to identification of input-driven dynamical systems from probability densities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A09%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20approach%20to%20identification%20of%20input-driven%20dynamical%20systems%20from%20probability%20densities&rft.jtitle=Inverse%20problems&rft.au=Nie,%20Xiaokai&rft.date=2018-08-01&rft.volume=34&rft.issue=8&rft.spage=85004&rft.pages=85004-&rft.issn=0266-5611&rft.eissn=1361-6420&rft.coden=INPEEY&rft_id=info:doi/10.1088/1361-6420/aac533&rft_dat=%3Ciop_cross%3Eipaac533%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |