Reconstruction of local perturbations in periodic surfaces
This paper concerns the inverse scattering problem to reconstruct a local perturbation in a periodic structure. Unlike the periodic problems, the periodicity for the scattered field no longer holds, thus classical methods, which reduce quasi-periodic fields in one periodic cell, are no longer availa...
Gespeichert in:
Veröffentlicht in: | Inverse problems 2018-03, Vol.34 (3), p.35006 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 35006 |
container_title | Inverse problems |
container_volume | 34 |
creator | Lechleiter, Armin Zhang, Ruming |
description | This paper concerns the inverse scattering problem to reconstruct a local perturbation in a periodic structure. Unlike the periodic problems, the periodicity for the scattered field no longer holds, thus classical methods, which reduce quasi-periodic fields in one periodic cell, are no longer available. Based on the Floquet-Bloch transform, a numerical method has been developed to solve the direct problem, that leads to a possibility to design an algorithm for the inverse problem. The numerical method introduced in this paper contains two steps. The first step is initialization, that is to locate the support of the perturbation by a simple method. This step reduces the inverse problem in an infinite domain into one periodic cell. The second step is to apply the Newton-CG method to solve the associated optimization problem. The perturbation is then approximated by a finite spline basis. Numerical examples are given at the end of this paper, showing the efficiency of the numerical method. |
doi_str_mv | 10.1088/1361-6420/aaa7b1 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6420_aaa7b1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ipaaa7b1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-eb8f082fdaa9692048e313300d87e5690b509d8d6187e6eb940cc13c93374c73</originalsourceid><addsrcrecordid>eNp9j0FLxDAQRoMoWFfvHnvyZN2ZTpum3mRxVVgQZO8hTRPIUpuStAf_vS0VT-JpmMf3DfMYu0V4QBBii8Qx40UOW6VU1eAZS37ROUsg5zwrOeIlu4rxBIAosErY44fRvo9jmPTofJ96m3Zeqy4dTBin0KiFxtT1C3C-dTqNU7BKm3jNLqzqorn5mRt23D8fd6_Z4f3lbfd0yDQhjplphAWR21apmtc5FMIQEgG0ojIlr6EpoW5Fy3HeuWnqArRG0jVRVeiKNgzWszr4GIOxcgjuU4UviSAXdbl4ysVTrupz5X6tOD_Ik59CP__3X_zuj7gbJBWSJFAJwOXQWvoGMxVnWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reconstruction of local perturbations in periodic surfaces</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Lechleiter, Armin ; Zhang, Ruming</creator><creatorcontrib>Lechleiter, Armin ; Zhang, Ruming</creatorcontrib><description>This paper concerns the inverse scattering problem to reconstruct a local perturbation in a periodic structure. Unlike the periodic problems, the periodicity for the scattered field no longer holds, thus classical methods, which reduce quasi-periodic fields in one periodic cell, are no longer available. Based on the Floquet-Bloch transform, a numerical method has been developed to solve the direct problem, that leads to a possibility to design an algorithm for the inverse problem. The numerical method introduced in this paper contains two steps. The first step is initialization, that is to locate the support of the perturbation by a simple method. This step reduces the inverse problem in an infinite domain into one periodic cell. The second step is to apply the Newton-CG method to solve the associated optimization problem. The perturbation is then approximated by a finite spline basis. Numerical examples are given at the end of this paper, showing the efficiency of the numerical method.</description><identifier>ISSN: 0266-5611</identifier><identifier>EISSN: 1361-6420</identifier><identifier>DOI: 10.1088/1361-6420/aaa7b1</identifier><identifier>CODEN: INPEEY</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Bloch transform ; inverse scattering problems ; locally perturbed periodic surfaces ; Newton-CG method</subject><ispartof>Inverse problems, 2018-03, Vol.34 (3), p.35006</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-eb8f082fdaa9692048e313300d87e5690b509d8d6187e6eb940cc13c93374c73</citedby><cites>FETCH-LOGICAL-c311t-eb8f082fdaa9692048e313300d87e5690b509d8d6187e6eb940cc13c93374c73</cites><orcidid>0000-0003-2336-1020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6420/aaa7b1/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Lechleiter, Armin</creatorcontrib><creatorcontrib>Zhang, Ruming</creatorcontrib><title>Reconstruction of local perturbations in periodic surfaces</title><title>Inverse problems</title><addtitle>IP</addtitle><addtitle>Inverse Problems</addtitle><description>This paper concerns the inverse scattering problem to reconstruct a local perturbation in a periodic structure. Unlike the periodic problems, the periodicity for the scattered field no longer holds, thus classical methods, which reduce quasi-periodic fields in one periodic cell, are no longer available. Based on the Floquet-Bloch transform, a numerical method has been developed to solve the direct problem, that leads to a possibility to design an algorithm for the inverse problem. The numerical method introduced in this paper contains two steps. The first step is initialization, that is to locate the support of the perturbation by a simple method. This step reduces the inverse problem in an infinite domain into one periodic cell. The second step is to apply the Newton-CG method to solve the associated optimization problem. The perturbation is then approximated by a finite spline basis. Numerical examples are given at the end of this paper, showing the efficiency of the numerical method.</description><subject>Bloch transform</subject><subject>inverse scattering problems</subject><subject>locally perturbed periodic surfaces</subject><subject>Newton-CG method</subject><issn>0266-5611</issn><issn>1361-6420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9j0FLxDAQRoMoWFfvHnvyZN2ZTpum3mRxVVgQZO8hTRPIUpuStAf_vS0VT-JpmMf3DfMYu0V4QBBii8Qx40UOW6VU1eAZS37ROUsg5zwrOeIlu4rxBIAosErY44fRvo9jmPTofJ96m3Zeqy4dTBin0KiFxtT1C3C-dTqNU7BKm3jNLqzqorn5mRt23D8fd6_Z4f3lbfd0yDQhjplphAWR21apmtc5FMIQEgG0ojIlr6EpoW5Fy3HeuWnqArRG0jVRVeiKNgzWszr4GIOxcgjuU4UviSAXdbl4ysVTrupz5X6tOD_Ik59CP__3X_zuj7gbJBWSJFAJwOXQWvoGMxVnWw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Lechleiter, Armin</creator><creator>Zhang, Ruming</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2336-1020</orcidid></search><sort><creationdate>20180301</creationdate><title>Reconstruction of local perturbations in periodic surfaces</title><author>Lechleiter, Armin ; Zhang, Ruming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-eb8f082fdaa9692048e313300d87e5690b509d8d6187e6eb940cc13c93374c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bloch transform</topic><topic>inverse scattering problems</topic><topic>locally perturbed periodic surfaces</topic><topic>Newton-CG method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lechleiter, Armin</creatorcontrib><creatorcontrib>Zhang, Ruming</creatorcontrib><collection>CrossRef</collection><jtitle>Inverse problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lechleiter, Armin</au><au>Zhang, Ruming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstruction of local perturbations in periodic surfaces</atitle><jtitle>Inverse problems</jtitle><stitle>IP</stitle><addtitle>Inverse Problems</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>34</volume><issue>3</issue><spage>35006</spage><pages>35006-</pages><issn>0266-5611</issn><eissn>1361-6420</eissn><coden>INPEEY</coden><abstract>This paper concerns the inverse scattering problem to reconstruct a local perturbation in a periodic structure. Unlike the periodic problems, the periodicity for the scattered field no longer holds, thus classical methods, which reduce quasi-periodic fields in one periodic cell, are no longer available. Based on the Floquet-Bloch transform, a numerical method has been developed to solve the direct problem, that leads to a possibility to design an algorithm for the inverse problem. The numerical method introduced in this paper contains two steps. The first step is initialization, that is to locate the support of the perturbation by a simple method. This step reduces the inverse problem in an infinite domain into one periodic cell. The second step is to apply the Newton-CG method to solve the associated optimization problem. The perturbation is then approximated by a finite spline basis. Numerical examples are given at the end of this paper, showing the efficiency of the numerical method.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6420/aaa7b1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2336-1020</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-5611 |
ispartof | Inverse problems, 2018-03, Vol.34 (3), p.35006 |
issn | 0266-5611 1361-6420 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6420_aaa7b1 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Bloch transform inverse scattering problems locally perturbed periodic surfaces Newton-CG method |
title | Reconstruction of local perturbations in periodic surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstruction%20of%20local%20perturbations%20in%20periodic%20surfaces&rft.jtitle=Inverse%20problems&rft.au=Lechleiter,%20Armin&rft.date=2018-03-01&rft.volume=34&rft.issue=3&rft.spage=35006&rft.pages=35006-&rft.issn=0266-5611&rft.eissn=1361-6420&rft.coden=INPEEY&rft_id=info:doi/10.1088/1361-6420/aaa7b1&rft_dat=%3Ciop_cross%3Eipaaa7b1%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |