Reconstruction of local perturbations in periodic surfaces

This paper concerns the inverse scattering problem to reconstruct a local perturbation in a periodic structure. Unlike the periodic problems, the periodicity for the scattered field no longer holds, thus classical methods, which reduce quasi-periodic fields in one periodic cell, are no longer availa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inverse problems 2018-03, Vol.34 (3), p.35006
Hauptverfasser: Lechleiter, Armin, Zhang, Ruming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 35006
container_title Inverse problems
container_volume 34
creator Lechleiter, Armin
Zhang, Ruming
description This paper concerns the inverse scattering problem to reconstruct a local perturbation in a periodic structure. Unlike the periodic problems, the periodicity for the scattered field no longer holds, thus classical methods, which reduce quasi-periodic fields in one periodic cell, are no longer available. Based on the Floquet-Bloch transform, a numerical method has been developed to solve the direct problem, that leads to a possibility to design an algorithm for the inverse problem. The numerical method introduced in this paper contains two steps. The first step is initialization, that is to locate the support of the perturbation by a simple method. This step reduces the inverse problem in an infinite domain into one periodic cell. The second step is to apply the Newton-CG method to solve the associated optimization problem. The perturbation is then approximated by a finite spline basis. Numerical examples are given at the end of this paper, showing the efficiency of the numerical method.
doi_str_mv 10.1088/1361-6420/aaa7b1
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6420_aaa7b1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ipaaa7b1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-eb8f082fdaa9692048e313300d87e5690b509d8d6187e6eb940cc13c93374c73</originalsourceid><addsrcrecordid>eNp9j0FLxDAQRoMoWFfvHnvyZN2ZTpum3mRxVVgQZO8hTRPIUpuStAf_vS0VT-JpmMf3DfMYu0V4QBBii8Qx40UOW6VU1eAZS37ROUsg5zwrOeIlu4rxBIAosErY44fRvo9jmPTofJ96m3Zeqy4dTBin0KiFxtT1C3C-dTqNU7BKm3jNLqzqorn5mRt23D8fd6_Z4f3lbfd0yDQhjplphAWR21apmtc5FMIQEgG0ojIlr6EpoW5Fy3HeuWnqArRG0jVRVeiKNgzWszr4GIOxcgjuU4UviSAXdbl4ysVTrupz5X6tOD_Ik59CP__3X_zuj7gbJBWSJFAJwOXQWvoGMxVnWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reconstruction of local perturbations in periodic surfaces</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Lechleiter, Armin ; Zhang, Ruming</creator><creatorcontrib>Lechleiter, Armin ; Zhang, Ruming</creatorcontrib><description>This paper concerns the inverse scattering problem to reconstruct a local perturbation in a periodic structure. Unlike the periodic problems, the periodicity for the scattered field no longer holds, thus classical methods, which reduce quasi-periodic fields in one periodic cell, are no longer available. Based on the Floquet-Bloch transform, a numerical method has been developed to solve the direct problem, that leads to a possibility to design an algorithm for the inverse problem. The numerical method introduced in this paper contains two steps. The first step is initialization, that is to locate the support of the perturbation by a simple method. This step reduces the inverse problem in an infinite domain into one periodic cell. The second step is to apply the Newton-CG method to solve the associated optimization problem. The perturbation is then approximated by a finite spline basis. Numerical examples are given at the end of this paper, showing the efficiency of the numerical method.</description><identifier>ISSN: 0266-5611</identifier><identifier>EISSN: 1361-6420</identifier><identifier>DOI: 10.1088/1361-6420/aaa7b1</identifier><identifier>CODEN: INPEEY</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Bloch transform ; inverse scattering problems ; locally perturbed periodic surfaces ; Newton-CG method</subject><ispartof>Inverse problems, 2018-03, Vol.34 (3), p.35006</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-eb8f082fdaa9692048e313300d87e5690b509d8d6187e6eb940cc13c93374c73</citedby><cites>FETCH-LOGICAL-c311t-eb8f082fdaa9692048e313300d87e5690b509d8d6187e6eb940cc13c93374c73</cites><orcidid>0000-0003-2336-1020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6420/aaa7b1/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Lechleiter, Armin</creatorcontrib><creatorcontrib>Zhang, Ruming</creatorcontrib><title>Reconstruction of local perturbations in periodic surfaces</title><title>Inverse problems</title><addtitle>IP</addtitle><addtitle>Inverse Problems</addtitle><description>This paper concerns the inverse scattering problem to reconstruct a local perturbation in a periodic structure. Unlike the periodic problems, the periodicity for the scattered field no longer holds, thus classical methods, which reduce quasi-periodic fields in one periodic cell, are no longer available. Based on the Floquet-Bloch transform, a numerical method has been developed to solve the direct problem, that leads to a possibility to design an algorithm for the inverse problem. The numerical method introduced in this paper contains two steps. The first step is initialization, that is to locate the support of the perturbation by a simple method. This step reduces the inverse problem in an infinite domain into one periodic cell. The second step is to apply the Newton-CG method to solve the associated optimization problem. The perturbation is then approximated by a finite spline basis. Numerical examples are given at the end of this paper, showing the efficiency of the numerical method.</description><subject>Bloch transform</subject><subject>inverse scattering problems</subject><subject>locally perturbed periodic surfaces</subject><subject>Newton-CG method</subject><issn>0266-5611</issn><issn>1361-6420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9j0FLxDAQRoMoWFfvHnvyZN2ZTpum3mRxVVgQZO8hTRPIUpuStAf_vS0VT-JpmMf3DfMYu0V4QBBii8Qx40UOW6VU1eAZS37ROUsg5zwrOeIlu4rxBIAosErY44fRvo9jmPTofJ96m3Zeqy4dTBin0KiFxtT1C3C-dTqNU7BKm3jNLqzqorn5mRt23D8fd6_Z4f3lbfd0yDQhjplphAWR21apmtc5FMIQEgG0ojIlr6EpoW5Fy3HeuWnqArRG0jVRVeiKNgzWszr4GIOxcgjuU4UviSAXdbl4ysVTrupz5X6tOD_Ik59CP__3X_zuj7gbJBWSJFAJwOXQWvoGMxVnWw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Lechleiter, Armin</creator><creator>Zhang, Ruming</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2336-1020</orcidid></search><sort><creationdate>20180301</creationdate><title>Reconstruction of local perturbations in periodic surfaces</title><author>Lechleiter, Armin ; Zhang, Ruming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-eb8f082fdaa9692048e313300d87e5690b509d8d6187e6eb940cc13c93374c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bloch transform</topic><topic>inverse scattering problems</topic><topic>locally perturbed periodic surfaces</topic><topic>Newton-CG method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lechleiter, Armin</creatorcontrib><creatorcontrib>Zhang, Ruming</creatorcontrib><collection>CrossRef</collection><jtitle>Inverse problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lechleiter, Armin</au><au>Zhang, Ruming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstruction of local perturbations in periodic surfaces</atitle><jtitle>Inverse problems</jtitle><stitle>IP</stitle><addtitle>Inverse Problems</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>34</volume><issue>3</issue><spage>35006</spage><pages>35006-</pages><issn>0266-5611</issn><eissn>1361-6420</eissn><coden>INPEEY</coden><abstract>This paper concerns the inverse scattering problem to reconstruct a local perturbation in a periodic structure. Unlike the periodic problems, the periodicity for the scattered field no longer holds, thus classical methods, which reduce quasi-periodic fields in one periodic cell, are no longer available. Based on the Floquet-Bloch transform, a numerical method has been developed to solve the direct problem, that leads to a possibility to design an algorithm for the inverse problem. The numerical method introduced in this paper contains two steps. The first step is initialization, that is to locate the support of the perturbation by a simple method. This step reduces the inverse problem in an infinite domain into one periodic cell. The second step is to apply the Newton-CG method to solve the associated optimization problem. The perturbation is then approximated by a finite spline basis. Numerical examples are given at the end of this paper, showing the efficiency of the numerical method.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6420/aaa7b1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2336-1020</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0266-5611
ispartof Inverse problems, 2018-03, Vol.34 (3), p.35006
issn 0266-5611
1361-6420
language eng
recordid cdi_iop_journals_10_1088_1361_6420_aaa7b1
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Bloch transform
inverse scattering problems
locally perturbed periodic surfaces
Newton-CG method
title Reconstruction of local perturbations in periodic surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstruction%20of%20local%20perturbations%20in%20periodic%20surfaces&rft.jtitle=Inverse%20problems&rft.au=Lechleiter,%20Armin&rft.date=2018-03-01&rft.volume=34&rft.issue=3&rft.spage=35006&rft.pages=35006-&rft.issn=0266-5611&rft.eissn=1361-6420&rft.coden=INPEEY&rft_id=info:doi/10.1088/1361-6420/aaa7b1&rft_dat=%3Ciop_cross%3Eipaaa7b1%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true