Dynamics of damped oscillations: physical pendulum

The frictional force between a physical damped pendulum and the medium is usually assumed to be proportional to the pendulum velocity. In this work, we investigate how the pendulum motion will be affected when the drag force is modeled using power-laws bigger than the usual 1 or 2, and we will show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of physics 2017-11, Vol.38 (6), p.65005
Hauptverfasser: Quiroga, G D, Ospina-Henao, P A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 65005
container_title European journal of physics
container_volume 38
creator Quiroga, G D
Ospina-Henao, P A
description The frictional force between a physical damped pendulum and the medium is usually assumed to be proportional to the pendulum velocity. In this work, we investigate how the pendulum motion will be affected when the drag force is modeled using power-laws bigger than the usual 1 or 2, and we will show that such assumption leads to contradictions with experimental observations. For this purpose, a more general model of a damped pendulum is introduced, assuming a power-law with integer exponents in the damping term of the equation of motion, and also in the non-harmonic regime. A Runge-Kutta solver is implemented to compute the numerical solutions for the first five powers, showing that the linear drag has the fastest decay to rest, and that bigger exponents have long-time fluctuation around the equilibrium position, which have no correlation (as is expected) with experimental results.
doi_str_mv 10.1088/1361-6404/aa8961
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6404_aa8961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ejpaa8961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-b18b4c5ca57232c421e85b779db1fff429ec536521b5c8584dbeb4f353abe93</originalsourceid><addsrcrecordid>eNp1j8tLxDAYxIMoWFfvHnvzYt3vy6NNvcn6hAUPeg9JmmBLH6HZHvrf26XiSU8Dw8wwP0KuEe4QpNwiyzHLOfCt1rLM8YQkv9YpSQA5y0BCcU4uYmwAECXyhNDHudddbWM6-LTSXXBVOkRbt60-1EMf79PwNcfa6jYNrq-mduouyZnXbXRXP7ohH89Pn7vXbP_-8rZ72GeWIT1kBqXhVlgtCsqo5RSdFKYoysqg957T0lnBckHRCCuF5JVxhnsmmDauZBsC66odhxhH51UY606Ps0JQR2J1xFNHPLUSL5WbtVIPQTXDNPbLPeWaoJhUuYJcAAgVKr8kb_9I_jv8DQ57ZBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamics of damped oscillations: physical pendulum</title><source>Institute of Physics Journals</source><creator>Quiroga, G D ; Ospina-Henao, P A</creator><creatorcontrib>Quiroga, G D ; Ospina-Henao, P A</creatorcontrib><description>The frictional force between a physical damped pendulum and the medium is usually assumed to be proportional to the pendulum velocity. In this work, we investigate how the pendulum motion will be affected when the drag force is modeled using power-laws bigger than the usual 1 or 2, and we will show that such assumption leads to contradictions with experimental observations. For this purpose, a more general model of a damped pendulum is introduced, assuming a power-law with integer exponents in the damping term of the equation of motion, and also in the non-harmonic regime. A Runge-Kutta solver is implemented to compute the numerical solutions for the first five powers, showing that the linear drag has the fastest decay to rest, and that bigger exponents have long-time fluctuation around the equilibrium position, which have no correlation (as is expected) with experimental results.</description><identifier>ISSN: 0143-0807</identifier><identifier>EISSN: 1361-6404</identifier><identifier>DOI: 10.1088/1361-6404/aa8961</identifier><identifier>CODEN: EJPHD4</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>damped oscillations ; non-conservative systems ; physical pendulum</subject><ispartof>European journal of physics, 2017-11, Vol.38 (6), p.65005</ispartof><rights>2017 European Physical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-b18b4c5ca57232c421e85b779db1fff429ec536521b5c8584dbeb4f353abe93</citedby><cites>FETCH-LOGICAL-c312t-b18b4c5ca57232c421e85b779db1fff429ec536521b5c8584dbeb4f353abe93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6404/aa8961/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53825,53872</link.rule.ids></links><search><creatorcontrib>Quiroga, G D</creatorcontrib><creatorcontrib>Ospina-Henao, P A</creatorcontrib><title>Dynamics of damped oscillations: physical pendulum</title><title>European journal of physics</title><addtitle>EJP</addtitle><addtitle>Eur. J. Phys</addtitle><description>The frictional force between a physical damped pendulum and the medium is usually assumed to be proportional to the pendulum velocity. In this work, we investigate how the pendulum motion will be affected when the drag force is modeled using power-laws bigger than the usual 1 or 2, and we will show that such assumption leads to contradictions with experimental observations. For this purpose, a more general model of a damped pendulum is introduced, assuming a power-law with integer exponents in the damping term of the equation of motion, and also in the non-harmonic regime. A Runge-Kutta solver is implemented to compute the numerical solutions for the first five powers, showing that the linear drag has the fastest decay to rest, and that bigger exponents have long-time fluctuation around the equilibrium position, which have no correlation (as is expected) with experimental results.</description><subject>damped oscillations</subject><subject>non-conservative systems</subject><subject>physical pendulum</subject><issn>0143-0807</issn><issn>1361-6404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1j8tLxDAYxIMoWFfvHnvzYt3vy6NNvcn6hAUPeg9JmmBLH6HZHvrf26XiSU8Dw8wwP0KuEe4QpNwiyzHLOfCt1rLM8YQkv9YpSQA5y0BCcU4uYmwAECXyhNDHudddbWM6-LTSXXBVOkRbt60-1EMf79PwNcfa6jYNrq-mduouyZnXbXRXP7ohH89Pn7vXbP_-8rZ72GeWIT1kBqXhVlgtCsqo5RSdFKYoysqg957T0lnBckHRCCuF5JVxhnsmmDauZBsC66odhxhH51UY606Ps0JQR2J1xFNHPLUSL5WbtVIPQTXDNPbLPeWaoJhUuYJcAAgVKr8kb_9I_jv8DQ57ZBE</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Quiroga, G D</creator><creator>Ospina-Henao, P A</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171101</creationdate><title>Dynamics of damped oscillations: physical pendulum</title><author>Quiroga, G D ; Ospina-Henao, P A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-b18b4c5ca57232c421e85b779db1fff429ec536521b5c8584dbeb4f353abe93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>damped oscillations</topic><topic>non-conservative systems</topic><topic>physical pendulum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quiroga, G D</creatorcontrib><creatorcontrib>Ospina-Henao, P A</creatorcontrib><collection>CrossRef</collection><jtitle>European journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quiroga, G D</au><au>Ospina-Henao, P A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of damped oscillations: physical pendulum</atitle><jtitle>European journal of physics</jtitle><stitle>EJP</stitle><addtitle>Eur. J. Phys</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>38</volume><issue>6</issue><spage>65005</spage><pages>65005-</pages><issn>0143-0807</issn><eissn>1361-6404</eissn><coden>EJPHD4</coden><abstract>The frictional force between a physical damped pendulum and the medium is usually assumed to be proportional to the pendulum velocity. In this work, we investigate how the pendulum motion will be affected when the drag force is modeled using power-laws bigger than the usual 1 or 2, and we will show that such assumption leads to contradictions with experimental observations. For this purpose, a more general model of a damped pendulum is introduced, assuming a power-law with integer exponents in the damping term of the equation of motion, and also in the non-harmonic regime. A Runge-Kutta solver is implemented to compute the numerical solutions for the first five powers, showing that the linear drag has the fastest decay to rest, and that bigger exponents have long-time fluctuation around the equilibrium position, which have no correlation (as is expected) with experimental results.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6404/aa8961</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-0807
ispartof European journal of physics, 2017-11, Vol.38 (6), p.65005
issn 0143-0807
1361-6404
language eng
recordid cdi_iop_journals_10_1088_1361_6404_aa8961
source Institute of Physics Journals
subjects damped oscillations
non-conservative systems
physical pendulum
title Dynamics of damped oscillations: physical pendulum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20damped%20oscillations:%20physical%20pendulum&rft.jtitle=European%20journal%20of%20physics&rft.au=Quiroga,%20G%20D&rft.date=2017-11-01&rft.volume=38&rft.issue=6&rft.spage=65005&rft.pages=65005-&rft.issn=0143-0807&rft.eissn=1361-6404&rft.coden=EJPHD4&rft_id=info:doi/10.1088/1361-6404/aa8961&rft_dat=%3Ciop_cross%3Eejpaa8961%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true