Regularizing dual-frame generalized harmonic gauge at null infinity
The dual-frame formalism leads to an approach to extend numerical relativity simulations in generalized harmonic gauge (GHG) all the way to null infinity. A major setback is that without care, even simple choices of initial data give rise to logarithmically divergent terms that would result in irreg...
Gespeichert in:
Veröffentlicht in: | Classical and quantum gravity 2023-01, Vol.40 (2), p.25011 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 25011 |
container_title | Classical and quantum gravity |
container_volume | 40 |
creator | Duarte, Miguel C Feng, Justin Gasperín, Edgar Hilditch, David |
description | The dual-frame formalism leads to an approach to extend numerical relativity simulations in generalized harmonic gauge (GHG) all the way to null infinity. A major setback is that without care, even simple choices of initial data give rise to logarithmically divergent terms that would result in irregular variables and equations on the compactified domain, which would in turn prevent accurate numerical approximation. It has been shown, however, that a suitable choice of gauge and constraint addition can be used to prevent their appearance. Presently we give a first order symmetric hyperbolic reduction of general relativity in GHG on compactified hyperboloidal slices that exploits this knowledge and eradicates these log-terms at leading orders. Because of their effect on the asymptotic solution space, specific formally singular terms are systematically chosen to remain. Such formally singular terms have been successfully treated numerically in toy models and result in a formulation with the desirable property that unphysical radiation content near infinity is suppressed. |
doi_str_mv | 10.1088/1361-6382/aca383 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6382_aca383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>cqgaca383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-d927dc877141f0eb32001c579b6e27ebb62dd7a864d4d604ffe95921bd1d6e7e3</originalsourceid><addsrcrecordid>eNp1UMFKAzEUDKLgWr17zAcYm5dsk-xRFrVCQRA9h-zmZU3ZZku2e2i_3paKN08Dw8wwM4TcA38EbswcpAKmpBFz1zpp5AUp_qhLUnChSlZJA9fkZhzXnAMYEAWpP7CbepfjIaaO-sn1LGS3Qdphwuz6eEBPv13eDCm2tHNTh9TtaJr6nsYUYoq7_S25Cq4f8e4XZ-Tr5fmzXrLV--tb_bRirRRix3wltG-N1lBC4NhIcWzRLnTVKBQam0YJ77UzqvSlV7wMAatFJaDx4BVqlDPCz7ltHsYxY7DbHDcu7y1wezrBnhbb02J7PuFoeThb4rC162HK6Vjwf_kP0XheVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Regularizing dual-frame generalized harmonic gauge at null infinity</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Duarte, Miguel ; C Feng, Justin ; Gasperín, Edgar ; Hilditch, David</creator><creatorcontrib>Duarte, Miguel ; C Feng, Justin ; Gasperín, Edgar ; Hilditch, David</creatorcontrib><description>The dual-frame formalism leads to an approach to extend numerical relativity simulations in generalized harmonic gauge (GHG) all the way to null infinity. A major setback is that without care, even simple choices of initial data give rise to logarithmically divergent terms that would result in irregular variables and equations on the compactified domain, which would in turn prevent accurate numerical approximation. It has been shown, however, that a suitable choice of gauge and constraint addition can be used to prevent their appearance. Presently we give a first order symmetric hyperbolic reduction of general relativity in GHG on compactified hyperboloidal slices that exploits this knowledge and eradicates these log-terms at leading orders. Because of their effect on the asymptotic solution space, specific formally singular terms are systematically chosen to remain. Such formally singular terms have been successfully treated numerically in toy models and result in a formulation with the desirable property that unphysical radiation content near infinity is suppressed.</description><identifier>ISSN: 0264-9381</identifier><identifier>EISSN: 1361-6382</identifier><identifier>DOI: 10.1088/1361-6382/aca383</identifier><identifier>CODEN: CQGRDG</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>asymptotic solutions ; generalized harmonic gauge ; null infinity</subject><ispartof>Classical and quantum gravity, 2023-01, Vol.40 (2), p.25011</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-d927dc877141f0eb32001c579b6e27ebb62dd7a864d4d604ffe95921bd1d6e7e3</citedby><cites>FETCH-LOGICAL-c322t-d927dc877141f0eb32001c579b6e27ebb62dd7a864d4d604ffe95921bd1d6e7e3</cites><orcidid>0000-0003-2223-1304 ; 0000-0001-9960-5293 ; 0000-0003-2441-5801 ; 0000-0003-1170-5121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6382/aca383/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Duarte, Miguel</creatorcontrib><creatorcontrib>C Feng, Justin</creatorcontrib><creatorcontrib>Gasperín, Edgar</creatorcontrib><creatorcontrib>Hilditch, David</creatorcontrib><title>Regularizing dual-frame generalized harmonic gauge at null infinity</title><title>Classical and quantum gravity</title><addtitle>CQG</addtitle><addtitle>Class. Quantum Grav</addtitle><description>The dual-frame formalism leads to an approach to extend numerical relativity simulations in generalized harmonic gauge (GHG) all the way to null infinity. A major setback is that without care, even simple choices of initial data give rise to logarithmically divergent terms that would result in irregular variables and equations on the compactified domain, which would in turn prevent accurate numerical approximation. It has been shown, however, that a suitable choice of gauge and constraint addition can be used to prevent their appearance. Presently we give a first order symmetric hyperbolic reduction of general relativity in GHG on compactified hyperboloidal slices that exploits this knowledge and eradicates these log-terms at leading orders. Because of their effect on the asymptotic solution space, specific formally singular terms are systematically chosen to remain. Such formally singular terms have been successfully treated numerically in toy models and result in a formulation with the desirable property that unphysical radiation content near infinity is suppressed.</description><subject>asymptotic solutions</subject><subject>generalized harmonic gauge</subject><subject>null infinity</subject><issn>0264-9381</issn><issn>1361-6382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMFKAzEUDKLgWr17zAcYm5dsk-xRFrVCQRA9h-zmZU3ZZku2e2i_3paKN08Dw8wwM4TcA38EbswcpAKmpBFz1zpp5AUp_qhLUnChSlZJA9fkZhzXnAMYEAWpP7CbepfjIaaO-sn1LGS3Qdphwuz6eEBPv13eDCm2tHNTh9TtaJr6nsYUYoq7_S25Cq4f8e4XZ-Tr5fmzXrLV--tb_bRirRRix3wltG-N1lBC4NhIcWzRLnTVKBQam0YJ77UzqvSlV7wMAatFJaDx4BVqlDPCz7ltHsYxY7DbHDcu7y1wezrBnhbb02J7PuFoeThb4rC162HK6Vjwf_kP0XheVw</recordid><startdate>20230119</startdate><enddate>20230119</enddate><creator>Duarte, Miguel</creator><creator>C Feng, Justin</creator><creator>Gasperín, Edgar</creator><creator>Hilditch, David</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2223-1304</orcidid><orcidid>https://orcid.org/0000-0001-9960-5293</orcidid><orcidid>https://orcid.org/0000-0003-2441-5801</orcidid><orcidid>https://orcid.org/0000-0003-1170-5121</orcidid></search><sort><creationdate>20230119</creationdate><title>Regularizing dual-frame generalized harmonic gauge at null infinity</title><author>Duarte, Miguel ; C Feng, Justin ; Gasperín, Edgar ; Hilditch, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-d927dc877141f0eb32001c579b6e27ebb62dd7a864d4d604ffe95921bd1d6e7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>asymptotic solutions</topic><topic>generalized harmonic gauge</topic><topic>null infinity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duarte, Miguel</creatorcontrib><creatorcontrib>C Feng, Justin</creatorcontrib><creatorcontrib>Gasperín, Edgar</creatorcontrib><creatorcontrib>Hilditch, David</creatorcontrib><collection>CrossRef</collection><jtitle>Classical and quantum gravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duarte, Miguel</au><au>C Feng, Justin</au><au>Gasperín, Edgar</au><au>Hilditch, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularizing dual-frame generalized harmonic gauge at null infinity</atitle><jtitle>Classical and quantum gravity</jtitle><stitle>CQG</stitle><addtitle>Class. Quantum Grav</addtitle><date>2023-01-19</date><risdate>2023</risdate><volume>40</volume><issue>2</issue><spage>25011</spage><pages>25011-</pages><issn>0264-9381</issn><eissn>1361-6382</eissn><coden>CQGRDG</coden><abstract>The dual-frame formalism leads to an approach to extend numerical relativity simulations in generalized harmonic gauge (GHG) all the way to null infinity. A major setback is that without care, even simple choices of initial data give rise to logarithmically divergent terms that would result in irregular variables and equations on the compactified domain, which would in turn prevent accurate numerical approximation. It has been shown, however, that a suitable choice of gauge and constraint addition can be used to prevent their appearance. Presently we give a first order symmetric hyperbolic reduction of general relativity in GHG on compactified hyperboloidal slices that exploits this knowledge and eradicates these log-terms at leading orders. Because of their effect on the asymptotic solution space, specific formally singular terms are systematically chosen to remain. Such formally singular terms have been successfully treated numerically in toy models and result in a formulation with the desirable property that unphysical radiation content near infinity is suppressed.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6382/aca383</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0003-2223-1304</orcidid><orcidid>https://orcid.org/0000-0001-9960-5293</orcidid><orcidid>https://orcid.org/0000-0003-2441-5801</orcidid><orcidid>https://orcid.org/0000-0003-1170-5121</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-9381 |
ispartof | Classical and quantum gravity, 2023-01, Vol.40 (2), p.25011 |
issn | 0264-9381 1361-6382 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6382_aca383 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | asymptotic solutions generalized harmonic gauge null infinity |
title | Regularizing dual-frame generalized harmonic gauge at null infinity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T11%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularizing%20dual-frame%20generalized%20harmonic%20gauge%20at%20null%20infinity&rft.jtitle=Classical%20and%20quantum%20gravity&rft.au=Duarte,%20Miguel&rft.date=2023-01-19&rft.volume=40&rft.issue=2&rft.spage=25011&rft.pages=25011-&rft.issn=0264-9381&rft.eissn=1361-6382&rft.coden=CQGRDG&rft_id=info:doi/10.1088/1361-6382/aca383&rft_dat=%3Ciop_cross%3Ecqgaca383%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |