Non-gravitational force measurement and correction by a precision inertial sensor of TianQin-1 satellite

Non-gravitational force models are critical not only for the applications of satellite orbit determination and prediction, but also for the studies of gravitational reference sensors in space-based gravitational wave detection missions and accelerometers in gravity satellite missions. In this paper,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Classical and quantum gravity 2022-06, Vol.39 (11), p.115005
Hauptverfasser: Zhou, An-Nan, Cai, Lin, Xiao, Chun-Yu, Tan, Ding-Yin, Li, Hong-Yin, Bai, Yan-Zheng, Zhou, Ze-Bing, Luo, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 115005
container_title Classical and quantum gravity
container_volume 39
creator Zhou, An-Nan
Cai, Lin
Xiao, Chun-Yu
Tan, Ding-Yin
Li, Hong-Yin
Bai, Yan-Zheng
Zhou, Ze-Bing
Luo, Jun
description Non-gravitational force models are critical not only for the applications of satellite orbit determination and prediction, but also for the studies of gravitational reference sensors in space-based gravitational wave detection missions and accelerometers in gravity satellite missions. In this paper, based on the inertial sensor data from the TianQin-1 (TQ-1) mission, a correction has been made in the non-gravitational force models by applying additional terms related to the orbital periods. After taking into account this correction, about 37 hours of TQ-1 inertial sensor data is calibrated in the sensitive axes, i.e. y - and z -axes, by comparing with the simulated non-gravitational accelerations. It is indicated that the peak-to-peak value of the non-gravitational acceleration correction terms are about 2% and 13% of the measured accelerations in the y - and z -axes, respectively. Within the frequency band below 0.01 Hz, the root mean square of calibration residual errors in y - and z -axes are suppressed from 1.03 × 10 −9 and 3.872 × 10 −9  m s −2 to 8.14 × 10 −10 and 1.343 × 10 −9  m s −2 , respectively. The bias and scale factor of the inertial sensor are also obtained from the calibration by the method of least-squares fit. Meanwhile, the inertial sensor measurements are validated and their signal compositions are analyzed.
doi_str_mv 10.1088/1361-6382/ac68c9
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6382_ac68c9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>cqgac68c9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-156d77a99aadb38ec16bb608847ec46d290961c40889436f5fdec364291bfe723</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7ePebowbqZpk2boyx-waII6zmk6WTN0k1q0hX8721Z8STCwPAe7w3Mj5BLYDfA6noBXEAmeJ0vtBG1kUdk9msdkxnLRZFJXsMpOUtpyxhADfmMvD8Hn22i_nSDHlzwuqM2RIN0hzrtI-7QD1T7lpoQI5opQpsvqmk_Kpcm6TzGwY3FhD6FSIOla6f9q_MZ0KQH7Do34Dk5sbpLePGz5-Tt_m69fMxWLw9Py9tVZjjwIYNStFWlpdS6bXiNBkTTiPHBokJTiDaXTAowxejIggtb2hYNF0UuobFY5XxO2OGuiSGliFb10e10_FLA1ERKTVjUhEUdSI2V60PFhV5twz6OFNJ_8as_4uZjo7hUAOOUjJWqby3_BjbmeQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non-gravitational force measurement and correction by a precision inertial sensor of TianQin-1 satellite</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Zhou, An-Nan ; Cai, Lin ; Xiao, Chun-Yu ; Tan, Ding-Yin ; Li, Hong-Yin ; Bai, Yan-Zheng ; Zhou, Ze-Bing ; Luo, Jun</creator><creatorcontrib>Zhou, An-Nan ; Cai, Lin ; Xiao, Chun-Yu ; Tan, Ding-Yin ; Li, Hong-Yin ; Bai, Yan-Zheng ; Zhou, Ze-Bing ; Luo, Jun</creatorcontrib><description>Non-gravitational force models are critical not only for the applications of satellite orbit determination and prediction, but also for the studies of gravitational reference sensors in space-based gravitational wave detection missions and accelerometers in gravity satellite missions. In this paper, based on the inertial sensor data from the TianQin-1 (TQ-1) mission, a correction has been made in the non-gravitational force models by applying additional terms related to the orbital periods. After taking into account this correction, about 37 hours of TQ-1 inertial sensor data is calibrated in the sensitive axes, i.e. y - and z -axes, by comparing with the simulated non-gravitational accelerations. It is indicated that the peak-to-peak value of the non-gravitational acceleration correction terms are about 2% and 13% of the measured accelerations in the y - and z -axes, respectively. Within the frequency band below 0.01 Hz, the root mean square of calibration residual errors in y - and z -axes are suppressed from 1.03 × 10 −9 and 3.872 × 10 −9  m s −2 to 8.14 × 10 −10 and 1.343 × 10 −9  m s −2 , respectively. The bias and scale factor of the inertial sensor are also obtained from the calibration by the method of least-squares fit. Meanwhile, the inertial sensor measurements are validated and their signal compositions are analyzed.</description><identifier>ISSN: 0264-9381</identifier><identifier>EISSN: 1361-6382</identifier><identifier>DOI: 10.1088/1361-6382/ac68c9</identifier><identifier>CODEN: CQGRDG</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>calibration ; inertial sensor ; model correction ; non-gravitational force ; TQ-1 satellite</subject><ispartof>Classical and quantum gravity, 2022-06, Vol.39 (11), p.115005</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-156d77a99aadb38ec16bb608847ec46d290961c40889436f5fdec364291bfe723</citedby><cites>FETCH-LOGICAL-c313t-156d77a99aadb38ec16bb608847ec46d290961c40889436f5fdec364291bfe723</cites><orcidid>0000-0002-9845-0995 ; 0000-0002-5758-2385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6382/ac68c9/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Zhou, An-Nan</creatorcontrib><creatorcontrib>Cai, Lin</creatorcontrib><creatorcontrib>Xiao, Chun-Yu</creatorcontrib><creatorcontrib>Tan, Ding-Yin</creatorcontrib><creatorcontrib>Li, Hong-Yin</creatorcontrib><creatorcontrib>Bai, Yan-Zheng</creatorcontrib><creatorcontrib>Zhou, Ze-Bing</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><title>Non-gravitational force measurement and correction by a precision inertial sensor of TianQin-1 satellite</title><title>Classical and quantum gravity</title><addtitle>CQG</addtitle><addtitle>Class. Quantum Grav</addtitle><description>Non-gravitational force models are critical not only for the applications of satellite orbit determination and prediction, but also for the studies of gravitational reference sensors in space-based gravitational wave detection missions and accelerometers in gravity satellite missions. In this paper, based on the inertial sensor data from the TianQin-1 (TQ-1) mission, a correction has been made in the non-gravitational force models by applying additional terms related to the orbital periods. After taking into account this correction, about 37 hours of TQ-1 inertial sensor data is calibrated in the sensitive axes, i.e. y - and z -axes, by comparing with the simulated non-gravitational accelerations. It is indicated that the peak-to-peak value of the non-gravitational acceleration correction terms are about 2% and 13% of the measured accelerations in the y - and z -axes, respectively. Within the frequency band below 0.01 Hz, the root mean square of calibration residual errors in y - and z -axes are suppressed from 1.03 × 10 −9 and 3.872 × 10 −9  m s −2 to 8.14 × 10 −10 and 1.343 × 10 −9  m s −2 , respectively. The bias and scale factor of the inertial sensor are also obtained from the calibration by the method of least-squares fit. Meanwhile, the inertial sensor measurements are validated and their signal compositions are analyzed.</description><subject>calibration</subject><subject>inertial sensor</subject><subject>model correction</subject><subject>non-gravitational force</subject><subject>TQ-1 satellite</subject><issn>0264-9381</issn><issn>1361-6382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7ePebowbqZpk2boyx-waII6zmk6WTN0k1q0hX8721Z8STCwPAe7w3Mj5BLYDfA6noBXEAmeJ0vtBG1kUdk9msdkxnLRZFJXsMpOUtpyxhADfmMvD8Hn22i_nSDHlzwuqM2RIN0hzrtI-7QD1T7lpoQI5opQpsvqmk_Kpcm6TzGwY3FhD6FSIOla6f9q_MZ0KQH7Do34Dk5sbpLePGz5-Tt_m69fMxWLw9Py9tVZjjwIYNStFWlpdS6bXiNBkTTiPHBokJTiDaXTAowxejIggtb2hYNF0UuobFY5XxO2OGuiSGliFb10e10_FLA1ERKTVjUhEUdSI2V60PFhV5twz6OFNJ_8as_4uZjo7hUAOOUjJWqby3_BjbmeQE</recordid><startdate>20220606</startdate><enddate>20220606</enddate><creator>Zhou, An-Nan</creator><creator>Cai, Lin</creator><creator>Xiao, Chun-Yu</creator><creator>Tan, Ding-Yin</creator><creator>Li, Hong-Yin</creator><creator>Bai, Yan-Zheng</creator><creator>Zhou, Ze-Bing</creator><creator>Luo, Jun</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9845-0995</orcidid><orcidid>https://orcid.org/0000-0002-5758-2385</orcidid></search><sort><creationdate>20220606</creationdate><title>Non-gravitational force measurement and correction by a precision inertial sensor of TianQin-1 satellite</title><author>Zhou, An-Nan ; Cai, Lin ; Xiao, Chun-Yu ; Tan, Ding-Yin ; Li, Hong-Yin ; Bai, Yan-Zheng ; Zhou, Ze-Bing ; Luo, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-156d77a99aadb38ec16bb608847ec46d290961c40889436f5fdec364291bfe723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>calibration</topic><topic>inertial sensor</topic><topic>model correction</topic><topic>non-gravitational force</topic><topic>TQ-1 satellite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, An-Nan</creatorcontrib><creatorcontrib>Cai, Lin</creatorcontrib><creatorcontrib>Xiao, Chun-Yu</creatorcontrib><creatorcontrib>Tan, Ding-Yin</creatorcontrib><creatorcontrib>Li, Hong-Yin</creatorcontrib><creatorcontrib>Bai, Yan-Zheng</creatorcontrib><creatorcontrib>Zhou, Ze-Bing</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><collection>CrossRef</collection><jtitle>Classical and quantum gravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, An-Nan</au><au>Cai, Lin</au><au>Xiao, Chun-Yu</au><au>Tan, Ding-Yin</au><au>Li, Hong-Yin</au><au>Bai, Yan-Zheng</au><au>Zhou, Ze-Bing</au><au>Luo, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-gravitational force measurement and correction by a precision inertial sensor of TianQin-1 satellite</atitle><jtitle>Classical and quantum gravity</jtitle><stitle>CQG</stitle><addtitle>Class. Quantum Grav</addtitle><date>2022-06-06</date><risdate>2022</risdate><volume>39</volume><issue>11</issue><spage>115005</spage><pages>115005-</pages><issn>0264-9381</issn><eissn>1361-6382</eissn><coden>CQGRDG</coden><abstract>Non-gravitational force models are critical not only for the applications of satellite orbit determination and prediction, but also for the studies of gravitational reference sensors in space-based gravitational wave detection missions and accelerometers in gravity satellite missions. In this paper, based on the inertial sensor data from the TianQin-1 (TQ-1) mission, a correction has been made in the non-gravitational force models by applying additional terms related to the orbital periods. After taking into account this correction, about 37 hours of TQ-1 inertial sensor data is calibrated in the sensitive axes, i.e. y - and z -axes, by comparing with the simulated non-gravitational accelerations. It is indicated that the peak-to-peak value of the non-gravitational acceleration correction terms are about 2% and 13% of the measured accelerations in the y - and z -axes, respectively. Within the frequency band below 0.01 Hz, the root mean square of calibration residual errors in y - and z -axes are suppressed from 1.03 × 10 −9 and 3.872 × 10 −9  m s −2 to 8.14 × 10 −10 and 1.343 × 10 −9  m s −2 , respectively. The bias and scale factor of the inertial sensor are also obtained from the calibration by the method of least-squares fit. Meanwhile, the inertial sensor measurements are validated and their signal compositions are analyzed.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6382/ac68c9</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9845-0995</orcidid><orcidid>https://orcid.org/0000-0002-5758-2385</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0264-9381
ispartof Classical and quantum gravity, 2022-06, Vol.39 (11), p.115005
issn 0264-9381
1361-6382
language eng
recordid cdi_iop_journals_10_1088_1361_6382_ac68c9
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects calibration
inertial sensor
model correction
non-gravitational force
TQ-1 satellite
title Non-gravitational force measurement and correction by a precision inertial sensor of TianQin-1 satellite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-gravitational%20force%20measurement%20and%20correction%20by%20a%20precision%20inertial%20sensor%20of%20TianQin-1%20satellite&rft.jtitle=Classical%20and%20quantum%20gravity&rft.au=Zhou,%20An-Nan&rft.date=2022-06-06&rft.volume=39&rft.issue=11&rft.spage=115005&rft.pages=115005-&rft.issn=0264-9381&rft.eissn=1361-6382&rft.coden=CQGRDG&rft_id=info:doi/10.1088/1361-6382/ac68c9&rft_dat=%3Ciop_cross%3Ecqgac68c9%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true