Entanglement amplification from rotating black holes

The quantum vacuum has long been known to be characterized by field correlations between spacetime points. We show that such correlations—vacuum entanglement—in the environment of near-extremal black holes is significantly amplified (up to ten-fold) relative to their slowly rotating counterparts. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Classical and quantum gravity 2022-01, Vol.39 (2), p.2
Hauptverfasser: Robbins, Matthew P G, Henderson, Laura J, Mann, Robert B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 2
container_title Classical and quantum gravity
container_volume 39
creator Robbins, Matthew P G
Henderson, Laura J
Mann, Robert B
description The quantum vacuum has long been known to be characterized by field correlations between spacetime points. We show that such correlations—vacuum entanglement—in the environment of near-extremal black holes is significantly amplified (up to ten-fold) relative to their slowly rotating counterparts. We demonstrate this effect for rotating Banados–Teitelboim–Zanelli black holes by measuring the entanglement through the concurrence extracted from the vacuum via two-level quantum systems (Unruh–DeWitt detectors). The effect is manifest at intermediate distances from the horizon, and is most pronounced for near-extremal small mass black holes. The effect is also robust, holding for all boundary conditions of the field and at large spacelike detector separations. Smaller amplification occurs near the horizon, where we find that the entanglement shadow—a region near the black hole from which entanglement cannot be extracted—is diminished in size as the black hole’s angular momentum increases.
doi_str_mv 10.1088/1361-6382/ac08a8
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6382_ac08a8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>cqgac08a8</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-794ad7912935b82719271c37d805b4a7af1f66109b584a85a7638eed3cbc2e4e3</originalsourceid><addsrcrecordid>eNp1j09LxDAQxYMoWFfvHvsBrJtJ0iY5yrL-gQUveg7TNFm7tk1J6sFvb0vFm4fhMcO8x_sRcgv0HqhSW-AVFBVXbIuWKlRnJPs7nZOMskoUmiu4JFcpnSgFUMAyIvbDhMOxc70bphz7sWt9a3Fqw5D7GPo8hmnehmNed2g_84_QuXRNLjx2yd386oa8P-7fds_F4fXpZfdwKCxnbCqkFthIDUzzslZMgp7HctkoWtYCJXrwVQVU16USqEqUc1nnGm5ry5xwfEPommtjSCk6b8bY9hi_DVCzUJsF0SyIZqWeLXerpQ2jOYWvOMwF_3__AQA8WBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Entanglement amplification from rotating black holes</title><source>Institute of Physics Journals</source><creator>Robbins, Matthew P G ; Henderson, Laura J ; Mann, Robert B</creator><creatorcontrib>Robbins, Matthew P G ; Henderson, Laura J ; Mann, Robert B</creatorcontrib><description>The quantum vacuum has long been known to be characterized by field correlations between spacetime points. We show that such correlations—vacuum entanglement—in the environment of near-extremal black holes is significantly amplified (up to ten-fold) relative to their slowly rotating counterparts. We demonstrate this effect for rotating Banados–Teitelboim–Zanelli black holes by measuring the entanglement through the concurrence extracted from the vacuum via two-level quantum systems (Unruh–DeWitt detectors). The effect is manifest at intermediate distances from the horizon, and is most pronounced for near-extremal small mass black holes. The effect is also robust, holding for all boundary conditions of the field and at large spacelike detector separations. Smaller amplification occurs near the horizon, where we find that the entanglement shadow—a region near the black hole from which entanglement cannot be extracted—is diminished in size as the black hole’s angular momentum increases.</description><identifier>ISSN: 0264-9381</identifier><identifier>EISSN: 1361-6382</identifier><identifier>DOI: 10.1088/1361-6382/ac08a8</identifier><identifier>CODEN: CQGRDG</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>black holes ; entanglement ; quantum information ; Unruh–DeWitt detectors</subject><ispartof>Classical and quantum gravity, 2022-01, Vol.39 (2), p.2</ispartof><rights>2021 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-794ad7912935b82719271c37d805b4a7af1f66109b584a85a7638eed3cbc2e4e3</citedby><cites>FETCH-LOGICAL-c322t-794ad7912935b82719271c37d805b4a7af1f66109b584a85a7638eed3cbc2e4e3</cites><orcidid>0000-0002-2183-3533 ; 0000-0002-4970-6165 ; 0000-0002-5859-2227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6382/ac08a8/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Robbins, Matthew P G</creatorcontrib><creatorcontrib>Henderson, Laura J</creatorcontrib><creatorcontrib>Mann, Robert B</creatorcontrib><title>Entanglement amplification from rotating black holes</title><title>Classical and quantum gravity</title><addtitle>CQG</addtitle><addtitle>Class. Quantum Grav</addtitle><description>The quantum vacuum has long been known to be characterized by field correlations between spacetime points. We show that such correlations—vacuum entanglement—in the environment of near-extremal black holes is significantly amplified (up to ten-fold) relative to their slowly rotating counterparts. We demonstrate this effect for rotating Banados–Teitelboim–Zanelli black holes by measuring the entanglement through the concurrence extracted from the vacuum via two-level quantum systems (Unruh–DeWitt detectors). The effect is manifest at intermediate distances from the horizon, and is most pronounced for near-extremal small mass black holes. The effect is also robust, holding for all boundary conditions of the field and at large spacelike detector separations. Smaller amplification occurs near the horizon, where we find that the entanglement shadow—a region near the black hole from which entanglement cannot be extracted—is diminished in size as the black hole’s angular momentum increases.</description><subject>black holes</subject><subject>entanglement</subject><subject>quantum information</subject><subject>Unruh–DeWitt detectors</subject><issn>0264-9381</issn><issn>1361-6382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1j09LxDAQxYMoWFfvHvsBrJtJ0iY5yrL-gQUveg7TNFm7tk1J6sFvb0vFm4fhMcO8x_sRcgv0HqhSW-AVFBVXbIuWKlRnJPs7nZOMskoUmiu4JFcpnSgFUMAyIvbDhMOxc70bphz7sWt9a3Fqw5D7GPo8hmnehmNed2g_84_QuXRNLjx2yd386oa8P-7fds_F4fXpZfdwKCxnbCqkFthIDUzzslZMgp7HctkoWtYCJXrwVQVU16USqEqUc1nnGm5ry5xwfEPommtjSCk6b8bY9hi_DVCzUJsF0SyIZqWeLXerpQ2jOYWvOMwF_3__AQA8WBw</recordid><startdate>20220120</startdate><enddate>20220120</enddate><creator>Robbins, Matthew P G</creator><creator>Henderson, Laura J</creator><creator>Mann, Robert B</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2183-3533</orcidid><orcidid>https://orcid.org/0000-0002-4970-6165</orcidid><orcidid>https://orcid.org/0000-0002-5859-2227</orcidid></search><sort><creationdate>20220120</creationdate><title>Entanglement amplification from rotating black holes</title><author>Robbins, Matthew P G ; Henderson, Laura J ; Mann, Robert B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-794ad7912935b82719271c37d805b4a7af1f66109b584a85a7638eed3cbc2e4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>black holes</topic><topic>entanglement</topic><topic>quantum information</topic><topic>Unruh–DeWitt detectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robbins, Matthew P G</creatorcontrib><creatorcontrib>Henderson, Laura J</creatorcontrib><creatorcontrib>Mann, Robert B</creatorcontrib><collection>CrossRef</collection><jtitle>Classical and quantum gravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robbins, Matthew P G</au><au>Henderson, Laura J</au><au>Mann, Robert B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entanglement amplification from rotating black holes</atitle><jtitle>Classical and quantum gravity</jtitle><stitle>CQG</stitle><addtitle>Class. Quantum Grav</addtitle><date>2022-01-20</date><risdate>2022</risdate><volume>39</volume><issue>2</issue><spage>2</spage><pages>2-</pages><issn>0264-9381</issn><eissn>1361-6382</eissn><coden>CQGRDG</coden><abstract>The quantum vacuum has long been known to be characterized by field correlations between spacetime points. We show that such correlations—vacuum entanglement—in the environment of near-extremal black holes is significantly amplified (up to ten-fold) relative to their slowly rotating counterparts. We demonstrate this effect for rotating Banados–Teitelboim–Zanelli black holes by measuring the entanglement through the concurrence extracted from the vacuum via two-level quantum systems (Unruh–DeWitt detectors). The effect is manifest at intermediate distances from the horizon, and is most pronounced for near-extremal small mass black holes. The effect is also robust, holding for all boundary conditions of the field and at large spacelike detector separations. Smaller amplification occurs near the horizon, where we find that the entanglement shadow—a region near the black hole from which entanglement cannot be extracted—is diminished in size as the black hole’s angular momentum increases.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6382/ac08a8</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2183-3533</orcidid><orcidid>https://orcid.org/0000-0002-4970-6165</orcidid><orcidid>https://orcid.org/0000-0002-5859-2227</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0264-9381
ispartof Classical and quantum gravity, 2022-01, Vol.39 (2), p.2
issn 0264-9381
1361-6382
language eng
recordid cdi_iop_journals_10_1088_1361_6382_ac08a8
source Institute of Physics Journals
subjects black holes
entanglement
quantum information
Unruh–DeWitt detectors
title Entanglement amplification from rotating black holes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A10%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entanglement%20amplification%20from%20rotating%20black%20holes&rft.jtitle=Classical%20and%20quantum%20gravity&rft.au=Robbins,%20Matthew%20P%20G&rft.date=2022-01-20&rft.volume=39&rft.issue=2&rft.spage=2&rft.pages=2-&rft.issn=0264-9381&rft.eissn=1361-6382&rft.coden=CQGRDG&rft_id=info:doi/10.1088/1361-6382/ac08a8&rft_dat=%3Ciop_cross%3Ecqgac08a8%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true