Eigenvalue asymptotics of long Kirchhoff plates with clamped edges
Asymptotic expansions are constructed for the eigenvalues and eigenfunctions of the Dirichlet problem for the biharmonic operator in thin domains (Kirchhoff plates with clamped edges). For a rectangular plate the leading terms are asymptotically determined from the Dirichlet problem for a second-ord...
Gespeichert in:
Veröffentlicht in: | Sbornik. Mathematics 2019-04, Vol.210 (4), p.473-494 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 494 |
---|---|
container_issue | 4 |
container_start_page | 473 |
container_title | Sbornik. Mathematics |
container_volume | 210 |
creator | Bakharev, F. L. Nazarov, S. A. |
description | Asymptotic expansions are constructed for the eigenvalues and eigenfunctions of the Dirichlet problem for the biharmonic operator in thin domains (Kirchhoff plates with clamped edges). For a rectangular plate the leading terms are asymptotically determined from the Dirichlet problem for a second-order ordinary differential equation, while for a -junction of plates they are determined from another limiting problem in an infinite waveguide formed by three half-strips in the shape of a letter and describing a boundary-layer phenomenon. Open questions are stated for which the method developed gives no answer. Bibliography: 33 titles. |
doi_str_mv | 10.1070/SM9008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1070_SM9008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357590855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-6ed303a485ecc899f246dbf917b6ffec1ba3d03d3b845fddb5bd6451a0a8b0293</originalsourceid><addsrcrecordid>eNpt0EtLw0AUBeBBFKxVf8Og6C56J_PIZGlLfWCLi-p6mMyjTUk7MZMo_fdGIrjQ1b2Lj3PgIHRO4IZABrfLRQ4gD9CIMCETJiE97H8QLOGCiGN0EuMGAHhK5AhNZuXK7T501Tms435bt6EtTcTB4yrsVvi5bMx6HbzHdaVbF_Fn2a6xqfS2dhY7u3LxFB15XUV39nPH6O1-9jp9TOYvD0_Tu3liKMg2Ec5SoJpJ7oyRee5TJmzhc5IVwntnSKGpBWppIRn31ha8sIJxokHLAtKcjtHlkFs34b1zsVWb0DW7vlKllGc8B8l5r64HZZoQY-O8qptyq5u9IqC-91HDPj28GGAZ6t-kP-jqH7RYTlTaS6ZYRlVtPf0C4DZuwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357590855</pqid></control><display><type>article</type><title>Eigenvalue asymptotics of long Kirchhoff plates with clamped edges</title><source>IOP Publishing Journals</source><source>Alma/SFX Local Collection</source><creator>Bakharev, F. L. ; Nazarov, S. A.</creator><creatorcontrib>Bakharev, F. L. ; Nazarov, S. A.</creatorcontrib><description>Asymptotic expansions are constructed for the eigenvalues and eigenfunctions of the Dirichlet problem for the biharmonic operator in thin domains (Kirchhoff plates with clamped edges). For a rectangular plate the leading terms are asymptotically determined from the Dirichlet problem for a second-order ordinary differential equation, while for a -junction of plates they are determined from another limiting problem in an infinite waveguide formed by three half-strips in the shape of a letter and describing a boundary-layer phenomenon. Open questions are stated for which the method developed gives no answer. Bibliography: 33 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM9008</identifier><language>eng</language><publisher>Providence: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>asymptotic behaviour ; Asymptotic series ; boundary layer ; Differential equations ; dimension reduction ; Dirichlet problem ; Eigenvalues ; eigenvalues and eigenfunctions ; Eigenvectors ; Kirchhoff plate ; Ordinary differential equations ; Rectangular plates</subject><ispartof>Sbornik. Mathematics, 2019-04, Vol.210 (4), p.473-494</ispartof><rights>2019 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><rights>Copyright IOP Publishing Apr 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-6ed303a485ecc899f246dbf917b6ffec1ba3d03d3b845fddb5bd6451a0a8b0293</citedby><cites>FETCH-LOGICAL-c308t-6ed303a485ecc899f246dbf917b6ffec1ba3d03d3b845fddb5bd6451a0a8b0293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/SM9008/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Bakharev, F. L.</creatorcontrib><creatorcontrib>Nazarov, S. A.</creatorcontrib><title>Eigenvalue asymptotics of long Kirchhoff plates with clamped edges</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>Asymptotic expansions are constructed for the eigenvalues and eigenfunctions of the Dirichlet problem for the biharmonic operator in thin domains (Kirchhoff plates with clamped edges). For a rectangular plate the leading terms are asymptotically determined from the Dirichlet problem for a second-order ordinary differential equation, while for a -junction of plates they are determined from another limiting problem in an infinite waveguide formed by three half-strips in the shape of a letter and describing a boundary-layer phenomenon. Open questions are stated for which the method developed gives no answer. Bibliography: 33 titles.</description><subject>asymptotic behaviour</subject><subject>Asymptotic series</subject><subject>boundary layer</subject><subject>Differential equations</subject><subject>dimension reduction</subject><subject>Dirichlet problem</subject><subject>Eigenvalues</subject><subject>eigenvalues and eigenfunctions</subject><subject>Eigenvectors</subject><subject>Kirchhoff plate</subject><subject>Ordinary differential equations</subject><subject>Rectangular plates</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpt0EtLw0AUBeBBFKxVf8Og6C56J_PIZGlLfWCLi-p6mMyjTUk7MZMo_fdGIrjQ1b2Lj3PgIHRO4IZABrfLRQ4gD9CIMCETJiE97H8QLOGCiGN0EuMGAHhK5AhNZuXK7T501Tms435bt6EtTcTB4yrsVvi5bMx6HbzHdaVbF_Fn2a6xqfS2dhY7u3LxFB15XUV39nPH6O1-9jp9TOYvD0_Tu3liKMg2Ec5SoJpJ7oyRee5TJmzhc5IVwntnSKGpBWppIRn31ha8sIJxokHLAtKcjtHlkFs34b1zsVWb0DW7vlKllGc8B8l5r64HZZoQY-O8qptyq5u9IqC-91HDPj28GGAZ6t-kP-jqH7RYTlTaS6ZYRlVtPf0C4DZuwQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Bakharev, F. L.</creator><creator>Nazarov, S. A.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20190401</creationdate><title>Eigenvalue asymptotics of long Kirchhoff plates with clamped edges</title><author>Bakharev, F. L. ; Nazarov, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-6ed303a485ecc899f246dbf917b6ffec1ba3d03d3b845fddb5bd6451a0a8b0293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>asymptotic behaviour</topic><topic>Asymptotic series</topic><topic>boundary layer</topic><topic>Differential equations</topic><topic>dimension reduction</topic><topic>Dirichlet problem</topic><topic>Eigenvalues</topic><topic>eigenvalues and eigenfunctions</topic><topic>Eigenvectors</topic><topic>Kirchhoff plate</topic><topic>Ordinary differential equations</topic><topic>Rectangular plates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakharev, F. L.</creatorcontrib><creatorcontrib>Nazarov, S. A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakharev, F. L.</au><au>Nazarov, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenvalue asymptotics of long Kirchhoff plates with clamped edges</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>210</volume><issue>4</issue><spage>473</spage><epage>494</epage><pages>473-494</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>Asymptotic expansions are constructed for the eigenvalues and eigenfunctions of the Dirichlet problem for the biharmonic operator in thin domains (Kirchhoff plates with clamped edges). For a rectangular plate the leading terms are asymptotically determined from the Dirichlet problem for a second-order ordinary differential equation, while for a -junction of plates they are determined from another limiting problem in an infinite waveguide formed by three half-strips in the shape of a letter and describing a boundary-layer phenomenon. Open questions are stated for which the method developed gives no answer. Bibliography: 33 titles.</abstract><cop>Providence</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM9008</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5616 |
ispartof | Sbornik. Mathematics, 2019-04, Vol.210 (4), p.473-494 |
issn | 1064-5616 1468-4802 |
language | eng |
recordid | cdi_iop_journals_10_1070_SM9008 |
source | IOP Publishing Journals; Alma/SFX Local Collection |
subjects | asymptotic behaviour Asymptotic series boundary layer Differential equations dimension reduction Dirichlet problem Eigenvalues eigenvalues and eigenfunctions Eigenvectors Kirchhoff plate Ordinary differential equations Rectangular plates |
title | Eigenvalue asymptotics of long Kirchhoff plates with clamped edges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenvalue%20asymptotics%20of%20long%20Kirchhoff%20plates%20with%20clamped%20edges&rft.jtitle=Sbornik.%20Mathematics&rft.au=Bakharev,%20F.%20L.&rft.date=2019-04-01&rft.volume=210&rft.issue=4&rft.spage=473&rft.epage=494&rft.pages=473-494&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM9008&rft_dat=%3Cproquest_iop_j%3E2357590855%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357590855&rft_id=info:pmid/&rfr_iscdi=true |