Eigenvalue asymptotics of long Kirchhoff plates with clamped edges

Asymptotic expansions are constructed for the eigenvalues and eigenfunctions of the Dirichlet problem for the biharmonic operator in thin domains (Kirchhoff plates with clamped edges). For a rectangular plate the leading terms are asymptotically determined from the Dirichlet problem for a second-ord...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sbornik. Mathematics 2019-04, Vol.210 (4), p.473-494
Hauptverfasser: Bakharev, F. L., Nazarov, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 494
container_issue 4
container_start_page 473
container_title Sbornik. Mathematics
container_volume 210
creator Bakharev, F. L.
Nazarov, S. A.
description Asymptotic expansions are constructed for the eigenvalues and eigenfunctions of the Dirichlet problem for the biharmonic operator in thin domains (Kirchhoff plates with clamped edges). For a rectangular plate the leading terms are asymptotically determined from the Dirichlet problem for a second-order ordinary differential equation, while for a -junction of plates they are determined from another limiting problem in an infinite waveguide formed by three half-strips in the shape of a letter and describing a boundary-layer phenomenon. Open questions are stated for which the method developed gives no answer. Bibliography: 33 titles.
doi_str_mv 10.1070/SM9008
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1070_SM9008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357590855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-6ed303a485ecc899f246dbf917b6ffec1ba3d03d3b845fddb5bd6451a0a8b0293</originalsourceid><addsrcrecordid>eNpt0EtLw0AUBeBBFKxVf8Og6C56J_PIZGlLfWCLi-p6mMyjTUk7MZMo_fdGIrjQ1b2Lj3PgIHRO4IZABrfLRQ4gD9CIMCETJiE97H8QLOGCiGN0EuMGAHhK5AhNZuXK7T501Tms435bt6EtTcTB4yrsVvi5bMx6HbzHdaVbF_Fn2a6xqfS2dhY7u3LxFB15XUV39nPH6O1-9jp9TOYvD0_Tu3liKMg2Ec5SoJpJ7oyRee5TJmzhc5IVwntnSKGpBWppIRn31ha8sIJxokHLAtKcjtHlkFs34b1zsVWb0DW7vlKllGc8B8l5r64HZZoQY-O8qptyq5u9IqC-91HDPj28GGAZ6t-kP-jqH7RYTlTaS6ZYRlVtPf0C4DZuwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357590855</pqid></control><display><type>article</type><title>Eigenvalue asymptotics of long Kirchhoff plates with clamped edges</title><source>IOP Publishing Journals</source><source>Alma/SFX Local Collection</source><creator>Bakharev, F. L. ; Nazarov, S. A.</creator><creatorcontrib>Bakharev, F. L. ; Nazarov, S. A.</creatorcontrib><description>Asymptotic expansions are constructed for the eigenvalues and eigenfunctions of the Dirichlet problem for the biharmonic operator in thin domains (Kirchhoff plates with clamped edges). For a rectangular plate the leading terms are asymptotically determined from the Dirichlet problem for a second-order ordinary differential equation, while for a -junction of plates they are determined from another limiting problem in an infinite waveguide formed by three half-strips in the shape of a letter and describing a boundary-layer phenomenon. Open questions are stated for which the method developed gives no answer. Bibliography: 33 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM9008</identifier><language>eng</language><publisher>Providence: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>asymptotic behaviour ; Asymptotic series ; boundary layer ; Differential equations ; dimension reduction ; Dirichlet problem ; Eigenvalues ; eigenvalues and eigenfunctions ; Eigenvectors ; Kirchhoff plate ; Ordinary differential equations ; Rectangular plates</subject><ispartof>Sbornik. Mathematics, 2019-04, Vol.210 (4), p.473-494</ispartof><rights>2019 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><rights>Copyright IOP Publishing Apr 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-6ed303a485ecc899f246dbf917b6ffec1ba3d03d3b845fddb5bd6451a0a8b0293</citedby><cites>FETCH-LOGICAL-c308t-6ed303a485ecc899f246dbf917b6ffec1ba3d03d3b845fddb5bd6451a0a8b0293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/SM9008/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Bakharev, F. L.</creatorcontrib><creatorcontrib>Nazarov, S. A.</creatorcontrib><title>Eigenvalue asymptotics of long Kirchhoff plates with clamped edges</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>Asymptotic expansions are constructed for the eigenvalues and eigenfunctions of the Dirichlet problem for the biharmonic operator in thin domains (Kirchhoff plates with clamped edges). For a rectangular plate the leading terms are asymptotically determined from the Dirichlet problem for a second-order ordinary differential equation, while for a -junction of plates they are determined from another limiting problem in an infinite waveguide formed by three half-strips in the shape of a letter and describing a boundary-layer phenomenon. Open questions are stated for which the method developed gives no answer. Bibliography: 33 titles.</description><subject>asymptotic behaviour</subject><subject>Asymptotic series</subject><subject>boundary layer</subject><subject>Differential equations</subject><subject>dimension reduction</subject><subject>Dirichlet problem</subject><subject>Eigenvalues</subject><subject>eigenvalues and eigenfunctions</subject><subject>Eigenvectors</subject><subject>Kirchhoff plate</subject><subject>Ordinary differential equations</subject><subject>Rectangular plates</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpt0EtLw0AUBeBBFKxVf8Og6C56J_PIZGlLfWCLi-p6mMyjTUk7MZMo_fdGIrjQ1b2Lj3PgIHRO4IZABrfLRQ4gD9CIMCETJiE97H8QLOGCiGN0EuMGAHhK5AhNZuXK7T501Tms435bt6EtTcTB4yrsVvi5bMx6HbzHdaVbF_Fn2a6xqfS2dhY7u3LxFB15XUV39nPH6O1-9jp9TOYvD0_Tu3liKMg2Ec5SoJpJ7oyRee5TJmzhc5IVwntnSKGpBWppIRn31ha8sIJxokHLAtKcjtHlkFs34b1zsVWb0DW7vlKllGc8B8l5r64HZZoQY-O8qptyq5u9IqC-91HDPj28GGAZ6t-kP-jqH7RYTlTaS6ZYRlVtPf0C4DZuwQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Bakharev, F. L.</creator><creator>Nazarov, S. A.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20190401</creationdate><title>Eigenvalue asymptotics of long Kirchhoff plates with clamped edges</title><author>Bakharev, F. L. ; Nazarov, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-6ed303a485ecc899f246dbf917b6ffec1ba3d03d3b845fddb5bd6451a0a8b0293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>asymptotic behaviour</topic><topic>Asymptotic series</topic><topic>boundary layer</topic><topic>Differential equations</topic><topic>dimension reduction</topic><topic>Dirichlet problem</topic><topic>Eigenvalues</topic><topic>eigenvalues and eigenfunctions</topic><topic>Eigenvectors</topic><topic>Kirchhoff plate</topic><topic>Ordinary differential equations</topic><topic>Rectangular plates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakharev, F. L.</creatorcontrib><creatorcontrib>Nazarov, S. A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakharev, F. L.</au><au>Nazarov, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenvalue asymptotics of long Kirchhoff plates with clamped edges</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>210</volume><issue>4</issue><spage>473</spage><epage>494</epage><pages>473-494</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>Asymptotic expansions are constructed for the eigenvalues and eigenfunctions of the Dirichlet problem for the biharmonic operator in thin domains (Kirchhoff plates with clamped edges). For a rectangular plate the leading terms are asymptotically determined from the Dirichlet problem for a second-order ordinary differential equation, while for a -junction of plates they are determined from another limiting problem in an infinite waveguide formed by three half-strips in the shape of a letter and describing a boundary-layer phenomenon. Open questions are stated for which the method developed gives no answer. Bibliography: 33 titles.</abstract><cop>Providence</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM9008</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5616
ispartof Sbornik. Mathematics, 2019-04, Vol.210 (4), p.473-494
issn 1064-5616
1468-4802
language eng
recordid cdi_iop_journals_10_1070_SM9008
source IOP Publishing Journals; Alma/SFX Local Collection
subjects asymptotic behaviour
Asymptotic series
boundary layer
Differential equations
dimension reduction
Dirichlet problem
Eigenvalues
eigenvalues and eigenfunctions
Eigenvectors
Kirchhoff plate
Ordinary differential equations
Rectangular plates
title Eigenvalue asymptotics of long Kirchhoff plates with clamped edges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenvalue%20asymptotics%20of%20long%20Kirchhoff%20plates%20with%20clamped%20edges&rft.jtitle=Sbornik.%20Mathematics&rft.au=Bakharev,%20F.%20L.&rft.date=2019-04-01&rft.volume=210&rft.issue=4&rft.spage=473&rft.epage=494&rft.pages=473-494&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM9008&rft_dat=%3Cproquest_iop_j%3E2357590855%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357590855&rft_id=info:pmid/&rfr_iscdi=true