The Fourier transform of bivariate functions that depend only on the maximum of the absolute values of their variables
Given an -function , necessary conditions and sufficient conditions for its Fourier transform to lie in and for the function to be in are indicated. The problem of the positivity of on is shown to be completely reducible to the same problem for the function in . Bibliography: 20 titles.
Gespeichert in:
Veröffentlicht in: | Sbornik. Mathematics 2018-05, Vol.209 (5), p.759-779 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 779 |
---|---|
container_issue | 5 |
container_start_page | 759 |
container_title | Sbornik. Mathematics |
container_volume | 209 |
creator | Trigub, R. M. |
description | Given an -function , necessary conditions and sufficient conditions for its Fourier transform to lie in and for the function to be in are indicated. The problem of the positivity of on is shown to be completely reducible to the same problem for the function in . Bibliography: 20 titles. |
doi_str_mv | 10.1070/SM8888 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1070_SM8888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357589688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-7b4444a76b67fa0f0bb683ab82b93507c930694b331b4049fb9dba5b21c2d3b83</originalsourceid><addsrcrecordid>eNpdkFFLwzAQx4MoOKd-hqDgWzVp2jR9lOFUUHxwPpdcm7CMtqlJOty3N1sHgvdwuTt-_3-SQ-iakntKCvLw-S5inKAZzbhIMkHS01gTniU5p_wcXXi_IYTkKRUztF2tFV7a0RnlcHCy99q6DluNwWylMzIorMe-Dsb2Hoe1DLhRg-obbPt2F1OcKdzJH9ONB9m-leBtO0blVraj8sexcfjgCK3yl-hMy9arq-M5R1_Lp9XiJXn7eH5dPL4ldVqIkBSQxZAFB15oSTQB4IJJECmULCdFXTLCywwYo5CRrNRQNiBzSGmdNgwEm6PbyXdw9js-JVSb-Nc-XlmlLC9yUXKxp-4mqnbWe6d0NTjTSberKKn2O62mnUbwZgKNHf6c_kG_okp0yA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357589688</pqid></control><display><type>article</type><title>The Fourier transform of bivariate functions that depend only on the maximum of the absolute values of their variables</title><source>IOP Publishing Journals</source><source>Alma/SFX Local Collection</source><creator>Trigub, R. M.</creator><creatorcontrib>Trigub, R. M.</creatorcontrib><description>Given an -function , necessary conditions and sufficient conditions for its Fourier transform to lie in and for the function to be in are indicated. The problem of the positivity of on is shown to be completely reducible to the same problem for the function in . Bibliography: 20 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM8888</identifier><language>eng</language><publisher>Providence: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>Bernstein's theorem on completely monotone functions ; Bivariate analysis ; Fourier transforms ; Lebesgue points ; Marcinkiewicz sums of a double Fourier series ; Mathematical analysis ; positive definiteness ; Wiener approximation theorem ; Wiener Banach algebra</subject><ispartof>Sbornik. Mathematics, 2018-05, Vol.209 (5), p.759-779</ispartof><rights>2018 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><rights>Copyright IOP Publishing May 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c278t-7b4444a76b67fa0f0bb683ab82b93507c930694b331b4049fb9dba5b21c2d3b83</citedby><cites>FETCH-LOGICAL-c278t-7b4444a76b67fa0f0bb683ab82b93507c930694b331b4049fb9dba5b21c2d3b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/SM8888/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53825</link.rule.ids></links><search><creatorcontrib>Trigub, R. M.</creatorcontrib><title>The Fourier transform of bivariate functions that depend only on the maximum of the absolute values of their variables</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>Given an -function , necessary conditions and sufficient conditions for its Fourier transform to lie in and for the function to be in are indicated. The problem of the positivity of on is shown to be completely reducible to the same problem for the function in . Bibliography: 20 titles.</description><subject>Bernstein's theorem on completely monotone functions</subject><subject>Bivariate analysis</subject><subject>Fourier transforms</subject><subject>Lebesgue points</subject><subject>Marcinkiewicz sums of a double Fourier series</subject><subject>Mathematical analysis</subject><subject>positive definiteness</subject><subject>Wiener approximation theorem</subject><subject>Wiener Banach algebra</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkFFLwzAQx4MoOKd-hqDgWzVp2jR9lOFUUHxwPpdcm7CMtqlJOty3N1sHgvdwuTt-_3-SQ-iakntKCvLw-S5inKAZzbhIMkHS01gTniU5p_wcXXi_IYTkKRUztF2tFV7a0RnlcHCy99q6DluNwWylMzIorMe-Dsb2Hoe1DLhRg-obbPt2F1OcKdzJH9ONB9m-leBtO0blVraj8sexcfjgCK3yl-hMy9arq-M5R1_Lp9XiJXn7eH5dPL4ldVqIkBSQxZAFB15oSTQB4IJJECmULCdFXTLCywwYo5CRrNRQNiBzSGmdNgwEm6PbyXdw9js-JVSb-Nc-XlmlLC9yUXKxp-4mqnbWe6d0NTjTSberKKn2O62mnUbwZgKNHf6c_kG_okp0yA</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Trigub, R. M.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20180501</creationdate><title>The Fourier transform of bivariate functions that depend only on the maximum of the absolute values of their variables</title><author>Trigub, R. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-7b4444a76b67fa0f0bb683ab82b93507c930694b331b4049fb9dba5b21c2d3b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bernstein's theorem on completely monotone functions</topic><topic>Bivariate analysis</topic><topic>Fourier transforms</topic><topic>Lebesgue points</topic><topic>Marcinkiewicz sums of a double Fourier series</topic><topic>Mathematical analysis</topic><topic>positive definiteness</topic><topic>Wiener approximation theorem</topic><topic>Wiener Banach algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trigub, R. M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trigub, R. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Fourier transform of bivariate functions that depend only on the maximum of the absolute values of their variables</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>209</volume><issue>5</issue><spage>759</spage><epage>779</epage><pages>759-779</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>Given an -function , necessary conditions and sufficient conditions for its Fourier transform to lie in and for the function to be in are indicated. The problem of the positivity of on is shown to be completely reducible to the same problem for the function in . Bibliography: 20 titles.</abstract><cop>Providence</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM8888</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5616 |
ispartof | Sbornik. Mathematics, 2018-05, Vol.209 (5), p.759-779 |
issn | 1064-5616 1468-4802 |
language | eng |
recordid | cdi_iop_journals_10_1070_SM8888 |
source | IOP Publishing Journals; Alma/SFX Local Collection |
subjects | Bernstein's theorem on completely monotone functions Bivariate analysis Fourier transforms Lebesgue points Marcinkiewicz sums of a double Fourier series Mathematical analysis positive definiteness Wiener approximation theorem Wiener Banach algebra |
title | The Fourier transform of bivariate functions that depend only on the maximum of the absolute values of their variables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A37%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Fourier%20transform%20of%20bivariate%20functions%20that%20depend%20only%20on%20the%20maximum%20of%20the%20absolute%20values%20of%20their%20variables&rft.jtitle=Sbornik.%20Mathematics&rft.au=Trigub,%20R.%20M.&rft.date=2018-05-01&rft.volume=209&rft.issue=5&rft.spage=759&rft.epage=779&rft.pages=759-779&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM8888&rft_dat=%3Cproquest_iop_j%3E2357589688%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357589688&rft_id=info:pmid/&rfr_iscdi=true |