The Fourier transform of bivariate functions that depend only on the maximum of the absolute values of their variables

Given an -function , necessary conditions and sufficient conditions for its Fourier transform to lie in and for the function to be in are indicated. The problem of the positivity of on is shown to be completely reducible to the same problem for the function in . Bibliography: 20 titles.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sbornik. Mathematics 2018-05, Vol.209 (5), p.759-779
1. Verfasser: Trigub, R. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 779
container_issue 5
container_start_page 759
container_title Sbornik. Mathematics
container_volume 209
creator Trigub, R. M.
description Given an -function , necessary conditions and sufficient conditions for its Fourier transform to lie in and for the function to be in are indicated. The problem of the positivity of on is shown to be completely reducible to the same problem for the function in . Bibliography: 20 titles.
doi_str_mv 10.1070/SM8888
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1070_SM8888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357589688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-7b4444a76b67fa0f0bb683ab82b93507c930694b331b4049fb9dba5b21c2d3b83</originalsourceid><addsrcrecordid>eNpdkFFLwzAQx4MoOKd-hqDgWzVp2jR9lOFUUHxwPpdcm7CMtqlJOty3N1sHgvdwuTt-_3-SQ-iakntKCvLw-S5inKAZzbhIMkHS01gTniU5p_wcXXi_IYTkKRUztF2tFV7a0RnlcHCy99q6DluNwWylMzIorMe-Dsb2Hoe1DLhRg-obbPt2F1OcKdzJH9ONB9m-leBtO0blVraj8sexcfjgCK3yl-hMy9arq-M5R1_Lp9XiJXn7eH5dPL4ldVqIkBSQxZAFB15oSTQB4IJJECmULCdFXTLCywwYo5CRrNRQNiBzSGmdNgwEm6PbyXdw9js-JVSb-Nc-XlmlLC9yUXKxp-4mqnbWe6d0NTjTSberKKn2O62mnUbwZgKNHf6c_kG_okp0yA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357589688</pqid></control><display><type>article</type><title>The Fourier transform of bivariate functions that depend only on the maximum of the absolute values of their variables</title><source>IOP Publishing Journals</source><source>Alma/SFX Local Collection</source><creator>Trigub, R. M.</creator><creatorcontrib>Trigub, R. M.</creatorcontrib><description>Given an -function , necessary conditions and sufficient conditions for its Fourier transform to lie in and for the function to be in are indicated. The problem of the positivity of on is shown to be completely reducible to the same problem for the function in . Bibliography: 20 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM8888</identifier><language>eng</language><publisher>Providence: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>Bernstein's theorem on completely monotone functions ; Bivariate analysis ; Fourier transforms ; Lebesgue points ; Marcinkiewicz sums of a double Fourier series ; Mathematical analysis ; positive definiteness ; Wiener approximation theorem ; Wiener Banach algebra</subject><ispartof>Sbornik. Mathematics, 2018-05, Vol.209 (5), p.759-779</ispartof><rights>2018 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><rights>Copyright IOP Publishing May 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c278t-7b4444a76b67fa0f0bb683ab82b93507c930694b331b4049fb9dba5b21c2d3b83</citedby><cites>FETCH-LOGICAL-c278t-7b4444a76b67fa0f0bb683ab82b93507c930694b331b4049fb9dba5b21c2d3b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/SM8888/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53825</link.rule.ids></links><search><creatorcontrib>Trigub, R. M.</creatorcontrib><title>The Fourier transform of bivariate functions that depend only on the maximum of the absolute values of their variables</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>Given an -function , necessary conditions and sufficient conditions for its Fourier transform to lie in and for the function to be in are indicated. The problem of the positivity of on is shown to be completely reducible to the same problem for the function in . Bibliography: 20 titles.</description><subject>Bernstein's theorem on completely monotone functions</subject><subject>Bivariate analysis</subject><subject>Fourier transforms</subject><subject>Lebesgue points</subject><subject>Marcinkiewicz sums of a double Fourier series</subject><subject>Mathematical analysis</subject><subject>positive definiteness</subject><subject>Wiener approximation theorem</subject><subject>Wiener Banach algebra</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkFFLwzAQx4MoOKd-hqDgWzVp2jR9lOFUUHxwPpdcm7CMtqlJOty3N1sHgvdwuTt-_3-SQ-iakntKCvLw-S5inKAZzbhIMkHS01gTniU5p_wcXXi_IYTkKRUztF2tFV7a0RnlcHCy99q6DluNwWylMzIorMe-Dsb2Hoe1DLhRg-obbPt2F1OcKdzJH9ONB9m-leBtO0blVraj8sexcfjgCK3yl-hMy9arq-M5R1_Lp9XiJXn7eH5dPL4ldVqIkBSQxZAFB15oSTQB4IJJECmULCdFXTLCywwYo5CRrNRQNiBzSGmdNgwEm6PbyXdw9js-JVSb-Nc-XlmlLC9yUXKxp-4mqnbWe6d0NTjTSberKKn2O62mnUbwZgKNHf6c_kG_okp0yA</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Trigub, R. M.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20180501</creationdate><title>The Fourier transform of bivariate functions that depend only on the maximum of the absolute values of their variables</title><author>Trigub, R. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-7b4444a76b67fa0f0bb683ab82b93507c930694b331b4049fb9dba5b21c2d3b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bernstein's theorem on completely monotone functions</topic><topic>Bivariate analysis</topic><topic>Fourier transforms</topic><topic>Lebesgue points</topic><topic>Marcinkiewicz sums of a double Fourier series</topic><topic>Mathematical analysis</topic><topic>positive definiteness</topic><topic>Wiener approximation theorem</topic><topic>Wiener Banach algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trigub, R. M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trigub, R. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Fourier transform of bivariate functions that depend only on the maximum of the absolute values of their variables</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>209</volume><issue>5</issue><spage>759</spage><epage>779</epage><pages>759-779</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>Given an -function , necessary conditions and sufficient conditions for its Fourier transform to lie in and for the function to be in are indicated. The problem of the positivity of on is shown to be completely reducible to the same problem for the function in . Bibliography: 20 titles.</abstract><cop>Providence</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM8888</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5616
ispartof Sbornik. Mathematics, 2018-05, Vol.209 (5), p.759-779
issn 1064-5616
1468-4802
language eng
recordid cdi_iop_journals_10_1070_SM8888
source IOP Publishing Journals; Alma/SFX Local Collection
subjects Bernstein's theorem on completely monotone functions
Bivariate analysis
Fourier transforms
Lebesgue points
Marcinkiewicz sums of a double Fourier series
Mathematical analysis
positive definiteness
Wiener approximation theorem
Wiener Banach algebra
title The Fourier transform of bivariate functions that depend only on the maximum of the absolute values of their variables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A37%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Fourier%20transform%20of%20bivariate%20functions%20that%20depend%20only%20on%20the%20maximum%20of%20the%20absolute%20values%20of%20their%20variables&rft.jtitle=Sbornik.%20Mathematics&rft.au=Trigub,%20R.%20M.&rft.date=2018-05-01&rft.volume=209&rft.issue=5&rft.spage=759&rft.epage=779&rft.pages=759-779&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM8888&rft_dat=%3Cproquest_iop_j%3E2357589688%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357589688&rft_id=info:pmid/&rfr_iscdi=true