Holomorphic mappings of the unit disc into itself with two fixed points

The paper is concerned with holomorphic mappings of the unit disc into itself with two fixed points. Two cases are considered: when one fixed point lies inside the disc and the other lies on the boundary and when both fixed points lie on the boundary. The effect that angular derivatives at boundary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sbornik. Mathematics 2017-03, Vol.208 (3), p.360-376
1. Verfasser: Goryainov, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 376
container_issue 3
container_start_page 360
container_title Sbornik. Mathematics
container_volume 208
creator Goryainov, V. V.
description The paper is concerned with holomorphic mappings of the unit disc into itself with two fixed points. Two cases are considered: when one fixed point lies inside the disc and the other lies on the boundary and when both fixed points lie on the boundary. The effect that angular derivatives at boundary fixed points have on the properties of functions inside the unit disc is studied. Conditions on the angular derivatives to guarantee the existence of domains of univalence inside the unit disc are given. The effect of the angular derivatives on the values of the Taylor coefficients of functions is also examined. Bibliography: 19 titles.
doi_str_mv 10.1070/SM8802
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1070_SM8802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357592264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-cf370e0972837c2532740fc2331c0ad6ba03c72c5c4d559e76ab25a0d2392f0b3</originalsourceid><addsrcrecordid>eNpdkEFLAzEUhIMoWKv-hqDgbfXlZZPsHqVoFSoe1POSZhOb0m7WJKX6711ZQfA0A_MxA0PIOYNrBgpuXp6qCvCATFgpq6Ic_OHgQZaFkEwek5OU1gAgkFUTMn8Im7ANsV95Q7e67333nmhwNK8s3XU-09YnQ32XA_U52Y2je59XNO8Ddf7TtrQPQ5hOyZHTm2TPfnVK3u7vXmcPxeJ5_ji7XRQGocqFcVyBhVphxZVBwVGV4AxyzgzoVi41cKPQCFO2QtRWSb1EoaFFXqODJZ-Sy7G3j-FjZ1Nu1mEXu2GyQS6UqBFlOVBXI2ViSCla1_TRb3X8ahg0Pyc140kDeDGCPvR_Tf-gb9f0Yq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357592264</pqid></control><display><type>article</type><title>Holomorphic mappings of the unit disc into itself with two fixed points</title><source>Institute of Physics Journals</source><source>Alma/SFX Local Collection</source><creator>Goryainov, V. V.</creator><creatorcontrib>Goryainov, V. V.</creatorcontrib><description>The paper is concerned with holomorphic mappings of the unit disc into itself with two fixed points. Two cases are considered: when one fixed point lies inside the disc and the other lies on the boundary and when both fixed points lie on the boundary. The effect that angular derivatives at boundary fixed points have on the properties of functions inside the unit disc is studied. Conditions on the angular derivatives to guarantee the existence of domains of univalence inside the unit disc are given. The effect of the angular derivatives on the values of the Taylor coefficients of functions is also examined. Bibliography: 19 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM8802</identifier><language>eng</language><publisher>Providence: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>angular derivative ; coefficient region ; Derivatives ; domain of univalence ; fixed point ; Fixed points (mathematics) ; holomorphic mapping ; Mathematical analysis</subject><ispartof>Sbornik. Mathematics, 2017-03, Vol.208 (3), p.360-376</ispartof><rights>2017 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><rights>Copyright IOP Publishing Mar 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c208t-cf370e0972837c2532740fc2331c0ad6ba03c72c5c4d559e76ab25a0d2392f0b3</citedby><cites>FETCH-LOGICAL-c208t-cf370e0972837c2532740fc2331c0ad6ba03c72c5c4d559e76ab25a0d2392f0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/SM8802/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Goryainov, V. V.</creatorcontrib><title>Holomorphic mappings of the unit disc into itself with two fixed points</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>The paper is concerned with holomorphic mappings of the unit disc into itself with two fixed points. Two cases are considered: when one fixed point lies inside the disc and the other lies on the boundary and when both fixed points lie on the boundary. The effect that angular derivatives at boundary fixed points have on the properties of functions inside the unit disc is studied. Conditions on the angular derivatives to guarantee the existence of domains of univalence inside the unit disc are given. The effect of the angular derivatives on the values of the Taylor coefficients of functions is also examined. Bibliography: 19 titles.</description><subject>angular derivative</subject><subject>coefficient region</subject><subject>Derivatives</subject><subject>domain of univalence</subject><subject>fixed point</subject><subject>Fixed points (mathematics)</subject><subject>holomorphic mapping</subject><subject>Mathematical analysis</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLAzEUhIMoWKv-hqDgbfXlZZPsHqVoFSoe1POSZhOb0m7WJKX6711ZQfA0A_MxA0PIOYNrBgpuXp6qCvCATFgpq6Ic_OHgQZaFkEwek5OU1gAgkFUTMn8Im7ANsV95Q7e67333nmhwNK8s3XU-09YnQ32XA_U52Y2je59XNO8Ddf7TtrQPQ5hOyZHTm2TPfnVK3u7vXmcPxeJ5_ji7XRQGocqFcVyBhVphxZVBwVGV4AxyzgzoVi41cKPQCFO2QtRWSb1EoaFFXqODJZ-Sy7G3j-FjZ1Nu1mEXu2GyQS6UqBFlOVBXI2ViSCla1_TRb3X8ahg0Pyc140kDeDGCPvR_Tf-gb9f0Yq4</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Goryainov, V. V.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20170301</creationdate><title>Holomorphic mappings of the unit disc into itself with two fixed points</title><author>Goryainov, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-cf370e0972837c2532740fc2331c0ad6ba03c72c5c4d559e76ab25a0d2392f0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>angular derivative</topic><topic>coefficient region</topic><topic>Derivatives</topic><topic>domain of univalence</topic><topic>fixed point</topic><topic>Fixed points (mathematics)</topic><topic>holomorphic mapping</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goryainov, V. V.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goryainov, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Holomorphic mappings of the unit disc into itself with two fixed points</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>208</volume><issue>3</issue><spage>360</spage><epage>376</epage><pages>360-376</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>The paper is concerned with holomorphic mappings of the unit disc into itself with two fixed points. Two cases are considered: when one fixed point lies inside the disc and the other lies on the boundary and when both fixed points lie on the boundary. The effect that angular derivatives at boundary fixed points have on the properties of functions inside the unit disc is studied. Conditions on the angular derivatives to guarantee the existence of domains of univalence inside the unit disc are given. The effect of the angular derivatives on the values of the Taylor coefficients of functions is also examined. Bibliography: 19 titles.</abstract><cop>Providence</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM8802</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5616
ispartof Sbornik. Mathematics, 2017-03, Vol.208 (3), p.360-376
issn 1064-5616
1468-4802
language eng
recordid cdi_iop_journals_10_1070_SM8802
source Institute of Physics Journals; Alma/SFX Local Collection
subjects angular derivative
coefficient region
Derivatives
domain of univalence
fixed point
Fixed points (mathematics)
holomorphic mapping
Mathematical analysis
title Holomorphic mappings of the unit disc into itself with two fixed points
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A58%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Holomorphic%20mappings%20of%20the%20unit%20disc%20into%20itself%20with%20two%20fixed%20points&rft.jtitle=Sbornik.%20Mathematics&rft.au=Goryainov,%20V.%20V.&rft.date=2017-03-01&rft.volume=208&rft.issue=3&rft.spage=360&rft.epage=376&rft.pages=360-376&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM8802&rft_dat=%3Cproquest_iop_j%3E2357592264%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357592264&rft_id=info:pmid/&rfr_iscdi=true