Holomorphic mappings of the unit disc into itself with two fixed points
The paper is concerned with holomorphic mappings of the unit disc into itself with two fixed points. Two cases are considered: when one fixed point lies inside the disc and the other lies on the boundary and when both fixed points lie on the boundary. The effect that angular derivatives at boundary...
Gespeichert in:
Veröffentlicht in: | Sbornik. Mathematics 2017-03, Vol.208 (3), p.360-376 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 376 |
---|---|
container_issue | 3 |
container_start_page | 360 |
container_title | Sbornik. Mathematics |
container_volume | 208 |
creator | Goryainov, V. V. |
description | The paper is concerned with holomorphic mappings of the unit disc into itself with two fixed points. Two cases are considered: when one fixed point lies inside the disc and the other lies on the boundary and when both fixed points lie on the boundary. The effect that angular derivatives at boundary fixed points have on the properties of functions inside the unit disc is studied. Conditions on the angular derivatives to guarantee the existence of domains of univalence inside the unit disc are given. The effect of the angular derivatives on the values of the Taylor coefficients of functions is also examined. Bibliography: 19 titles. |
doi_str_mv | 10.1070/SM8802 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1070_SM8802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357592264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-cf370e0972837c2532740fc2331c0ad6ba03c72c5c4d559e76ab25a0d2392f0b3</originalsourceid><addsrcrecordid>eNpdkEFLAzEUhIMoWKv-hqDgbfXlZZPsHqVoFSoe1POSZhOb0m7WJKX6711ZQfA0A_MxA0PIOYNrBgpuXp6qCvCATFgpq6Ic_OHgQZaFkEwek5OU1gAgkFUTMn8Im7ANsV95Q7e67333nmhwNK8s3XU-09YnQ32XA_U52Y2je59XNO8Ddf7TtrQPQ5hOyZHTm2TPfnVK3u7vXmcPxeJ5_ji7XRQGocqFcVyBhVphxZVBwVGV4AxyzgzoVi41cKPQCFO2QtRWSb1EoaFFXqODJZ-Sy7G3j-FjZ1Nu1mEXu2GyQS6UqBFlOVBXI2ViSCla1_TRb3X8ahg0Pyc140kDeDGCPvR_Tf-gb9f0Yq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357592264</pqid></control><display><type>article</type><title>Holomorphic mappings of the unit disc into itself with two fixed points</title><source>Institute of Physics Journals</source><source>Alma/SFX Local Collection</source><creator>Goryainov, V. V.</creator><creatorcontrib>Goryainov, V. V.</creatorcontrib><description>The paper is concerned with holomorphic mappings of the unit disc into itself with two fixed points. Two cases are considered: when one fixed point lies inside the disc and the other lies on the boundary and when both fixed points lie on the boundary. The effect that angular derivatives at boundary fixed points have on the properties of functions inside the unit disc is studied. Conditions on the angular derivatives to guarantee the existence of domains of univalence inside the unit disc are given. The effect of the angular derivatives on the values of the Taylor coefficients of functions is also examined. Bibliography: 19 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM8802</identifier><language>eng</language><publisher>Providence: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>angular derivative ; coefficient region ; Derivatives ; domain of univalence ; fixed point ; Fixed points (mathematics) ; holomorphic mapping ; Mathematical analysis</subject><ispartof>Sbornik. Mathematics, 2017-03, Vol.208 (3), p.360-376</ispartof><rights>2017 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><rights>Copyright IOP Publishing Mar 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c208t-cf370e0972837c2532740fc2331c0ad6ba03c72c5c4d559e76ab25a0d2392f0b3</citedby><cites>FETCH-LOGICAL-c208t-cf370e0972837c2532740fc2331c0ad6ba03c72c5c4d559e76ab25a0d2392f0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/SM8802/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Goryainov, V. V.</creatorcontrib><title>Holomorphic mappings of the unit disc into itself with two fixed points</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>The paper is concerned with holomorphic mappings of the unit disc into itself with two fixed points. Two cases are considered: when one fixed point lies inside the disc and the other lies on the boundary and when both fixed points lie on the boundary. The effect that angular derivatives at boundary fixed points have on the properties of functions inside the unit disc is studied. Conditions on the angular derivatives to guarantee the existence of domains of univalence inside the unit disc are given. The effect of the angular derivatives on the values of the Taylor coefficients of functions is also examined. Bibliography: 19 titles.</description><subject>angular derivative</subject><subject>coefficient region</subject><subject>Derivatives</subject><subject>domain of univalence</subject><subject>fixed point</subject><subject>Fixed points (mathematics)</subject><subject>holomorphic mapping</subject><subject>Mathematical analysis</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLAzEUhIMoWKv-hqDgbfXlZZPsHqVoFSoe1POSZhOb0m7WJKX6711ZQfA0A_MxA0PIOYNrBgpuXp6qCvCATFgpq6Ic_OHgQZaFkEwek5OU1gAgkFUTMn8Im7ANsV95Q7e67333nmhwNK8s3XU-09YnQ32XA_U52Y2je59XNO8Ddf7TtrQPQ5hOyZHTm2TPfnVK3u7vXmcPxeJ5_ji7XRQGocqFcVyBhVphxZVBwVGV4AxyzgzoVi41cKPQCFO2QtRWSb1EoaFFXqODJZ-Sy7G3j-FjZ1Nu1mEXu2GyQS6UqBFlOVBXI2ViSCla1_TRb3X8ahg0Pyc140kDeDGCPvR_Tf-gb9f0Yq4</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Goryainov, V. V.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20170301</creationdate><title>Holomorphic mappings of the unit disc into itself with two fixed points</title><author>Goryainov, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-cf370e0972837c2532740fc2331c0ad6ba03c72c5c4d559e76ab25a0d2392f0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>angular derivative</topic><topic>coefficient region</topic><topic>Derivatives</topic><topic>domain of univalence</topic><topic>fixed point</topic><topic>Fixed points (mathematics)</topic><topic>holomorphic mapping</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goryainov, V. V.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goryainov, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Holomorphic mappings of the unit disc into itself with two fixed points</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>208</volume><issue>3</issue><spage>360</spage><epage>376</epage><pages>360-376</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>The paper is concerned with holomorphic mappings of the unit disc into itself with two fixed points. Two cases are considered: when one fixed point lies inside the disc and the other lies on the boundary and when both fixed points lie on the boundary. The effect that angular derivatives at boundary fixed points have on the properties of functions inside the unit disc is studied. Conditions on the angular derivatives to guarantee the existence of domains of univalence inside the unit disc are given. The effect of the angular derivatives on the values of the Taylor coefficients of functions is also examined. Bibliography: 19 titles.</abstract><cop>Providence</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM8802</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5616 |
ispartof | Sbornik. Mathematics, 2017-03, Vol.208 (3), p.360-376 |
issn | 1064-5616 1468-4802 |
language | eng |
recordid | cdi_iop_journals_10_1070_SM8802 |
source | Institute of Physics Journals; Alma/SFX Local Collection |
subjects | angular derivative coefficient region Derivatives domain of univalence fixed point Fixed points (mathematics) holomorphic mapping Mathematical analysis |
title | Holomorphic mappings of the unit disc into itself with two fixed points |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A58%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Holomorphic%20mappings%20of%20the%20unit%20disc%20into%20itself%20with%20two%20fixed%20points&rft.jtitle=Sbornik.%20Mathematics&rft.au=Goryainov,%20V.%20V.&rft.date=2017-03-01&rft.volume=208&rft.issue=3&rft.spage=360&rft.epage=376&rft.pages=360-376&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM8802&rft_dat=%3Cproquest_iop_j%3E2357592264%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357592264&rft_id=info:pmid/&rfr_iscdi=true |