One-bit sensing, discrepancy and Stolarsky's principle
A sign-linear one-bit map from the -dimensional sphere to the -dimensional Hamming cube is given by where . For , we estimate , the smallest integer so that there is a sign-linear map which has the -restricted isometric property, where we impose the normalized geodesic distance on and the Hamming me...
Gespeichert in:
Veröffentlicht in: | Sbornik. Mathematics 2017-06, Vol.208 (6), p.744-763 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 763 |
---|---|
container_issue | 6 |
container_start_page | 744 |
container_title | Sbornik. Mathematics |
container_volume | 208 |
creator | Bilyk, D. Lacey, M. T. |
description | A sign-linear one-bit map from the -dimensional sphere to the -dimensional Hamming cube is given by where . For , we estimate , the smallest integer so that there is a sign-linear map which has the -restricted isometric property, where we impose the normalized geodesic distance on and the Hamming metric on . Up to a polylogarithmic factor, , which has a dimensional correction in the power of . This is a question that arises from the one-bit sensing literature, and the method of proof follows from geometric discrepancy theory. We also obtain an analogue of the Stolarsky invariance principle for this situation, which implies that minimizing the -average of the embedding error is equivalent to minimizing the discrete energy , where is the normalized geodesic distance. Bibliography: 39 titles. |
doi_str_mv | 10.1070/SM8656 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1070_SM8656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357588548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-9c1c0f29e45388043b9b3ed06a9e1d23e6bed3f84c32a2a4c9d8d3f81c738d543</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRsFb9DUFRL0ZnPzM5avELWnqonpfN7kZSYxJ300P_vSkRBPE078DDM8NLyCmFGwoZ3K4WqKTaIxMqFKYCge0PGZRIpaLqkBzFuAYAyShOiFo2Pi2qPom-iVXzfp24KtrgO9PYbWIal6z6tjYhfmyvYtKFqrFVV_tjclCaOvqTnzklb48Pr7PndL58epndzVPLAfs0t9RCyXIvJEcEwYu84N6BMrmnjnGvCu94icJyZpgRNne426nNODop-JScj94utF8bH3u9bjehGU5qxmUmEaXAgbocKRvaGIMv9fDopwlbTUHvOtFjJwN4MYJV2_2aFqt7zQC10pkQunPlwJ39w_2RfQMFqmls</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357588548</pqid></control><display><type>article</type><title>One-bit sensing, discrepancy and Stolarsky's principle</title><source>IOP Publishing Journals</source><source>Alma/SFX Local Collection</source><creator>Bilyk, D. ; Lacey, M. T.</creator><creatorcontrib>Bilyk, D. ; Lacey, M. T.</creatorcontrib><description>A sign-linear one-bit map from the -dimensional sphere to the -dimensional Hamming cube is given by where . For , we estimate , the smallest integer so that there is a sign-linear map which has the -restricted isometric property, where we impose the normalized geodesic distance on and the Hamming metric on . Up to a polylogarithmic factor, , which has a dimensional correction in the power of . This is a question that arises from the one-bit sensing literature, and the method of proof follows from geometric discrepancy theory. We also obtain an analogue of the Stolarsky invariance principle for this situation, which implies that minimizing the -average of the embedding error is equivalent to minimizing the discrete energy , where is the normalized geodesic distance. Bibliography: 39 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM8656</identifier><language>eng</language><publisher>Providence: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>discrepancy ; one-bit sensing ; restricted isometry property ; Stolarsky principle</subject><ispartof>Sbornik. Mathematics, 2017-06, Vol.208 (6), p.744-763</ispartof><rights>2017 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><rights>Copyright IOP Publishing Jun 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-9c1c0f29e45388043b9b3ed06a9e1d23e6bed3f84c32a2a4c9d8d3f81c738d543</citedby><cites>FETCH-LOGICAL-c308t-9c1c0f29e45388043b9b3ed06a9e1d23e6bed3f84c32a2a4c9d8d3f81c738d543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/SM8656/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824</link.rule.ids></links><search><creatorcontrib>Bilyk, D.</creatorcontrib><creatorcontrib>Lacey, M. T.</creatorcontrib><title>One-bit sensing, discrepancy and Stolarsky's principle</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>A sign-linear one-bit map from the -dimensional sphere to the -dimensional Hamming cube is given by where . For , we estimate , the smallest integer so that there is a sign-linear map which has the -restricted isometric property, where we impose the normalized geodesic distance on and the Hamming metric on . Up to a polylogarithmic factor, , which has a dimensional correction in the power of . This is a question that arises from the one-bit sensing literature, and the method of proof follows from geometric discrepancy theory. We also obtain an analogue of the Stolarsky invariance principle for this situation, which implies that minimizing the -average of the embedding error is equivalent to minimizing the discrete energy , where is the normalized geodesic distance. Bibliography: 39 titles.</description><subject>discrepancy</subject><subject>one-bit sensing</subject><subject>restricted isometry property</subject><subject>Stolarsky principle</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkE1Lw0AQhhdRsFb9DUFRL0ZnPzM5avELWnqonpfN7kZSYxJ300P_vSkRBPE078DDM8NLyCmFGwoZ3K4WqKTaIxMqFKYCge0PGZRIpaLqkBzFuAYAyShOiFo2Pi2qPom-iVXzfp24KtrgO9PYbWIal6z6tjYhfmyvYtKFqrFVV_tjclCaOvqTnzklb48Pr7PndL58epndzVPLAfs0t9RCyXIvJEcEwYu84N6BMrmnjnGvCu94icJyZpgRNne426nNODop-JScj94utF8bH3u9bjehGU5qxmUmEaXAgbocKRvaGIMv9fDopwlbTUHvOtFjJwN4MYJV2_2aFqt7zQC10pkQunPlwJ39w_2RfQMFqmls</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Bilyk, D.</creator><creator>Lacey, M. T.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20170601</creationdate><title>One-bit sensing, discrepancy and Stolarsky's principle</title><author>Bilyk, D. ; Lacey, M. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-9c1c0f29e45388043b9b3ed06a9e1d23e6bed3f84c32a2a4c9d8d3f81c738d543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>discrepancy</topic><topic>one-bit sensing</topic><topic>restricted isometry property</topic><topic>Stolarsky principle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilyk, D.</creatorcontrib><creatorcontrib>Lacey, M. T.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilyk, D.</au><au>Lacey, M. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-bit sensing, discrepancy and Stolarsky's principle</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>208</volume><issue>6</issue><spage>744</spage><epage>763</epage><pages>744-763</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>A sign-linear one-bit map from the -dimensional sphere to the -dimensional Hamming cube is given by where . For , we estimate , the smallest integer so that there is a sign-linear map which has the -restricted isometric property, where we impose the normalized geodesic distance on and the Hamming metric on . Up to a polylogarithmic factor, , which has a dimensional correction in the power of . This is a question that arises from the one-bit sensing literature, and the method of proof follows from geometric discrepancy theory. We also obtain an analogue of the Stolarsky invariance principle for this situation, which implies that minimizing the -average of the embedding error is equivalent to minimizing the discrete energy , where is the normalized geodesic distance. Bibliography: 39 titles.</abstract><cop>Providence</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM8656</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5616 |
ispartof | Sbornik. Mathematics, 2017-06, Vol.208 (6), p.744-763 |
issn | 1064-5616 1468-4802 |
language | eng |
recordid | cdi_iop_journals_10_1070_SM8656 |
source | IOP Publishing Journals; Alma/SFX Local Collection |
subjects | discrepancy one-bit sensing restricted isometry property Stolarsky principle |
title | One-bit sensing, discrepancy and Stolarsky's principle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-bit%20sensing,%20discrepancy%20and%20Stolarsky's%20principle&rft.jtitle=Sbornik.%20Mathematics&rft.au=Bilyk,%20D.&rft.date=2017-06-01&rft.volume=208&rft.issue=6&rft.spage=744&rft.epage=763&rft.pages=744-763&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM8656&rft_dat=%3Cproquest_iop_j%3E2357588548%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357588548&rft_id=info:pmid/&rfr_iscdi=true |