One-bit sensing, discrepancy and Stolarsky's principle

A sign-linear one-bit map from the -dimensional sphere to the -dimensional Hamming cube is given by where . For , we estimate , the smallest integer so that there is a sign-linear map which has the -restricted isometric property, where we impose the normalized geodesic distance on and the Hamming me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sbornik. Mathematics 2017-06, Vol.208 (6), p.744-763
Hauptverfasser: Bilyk, D., Lacey, M. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 763
container_issue 6
container_start_page 744
container_title Sbornik. Mathematics
container_volume 208
creator Bilyk, D.
Lacey, M. T.
description A sign-linear one-bit map from the -dimensional sphere to the -dimensional Hamming cube is given by where . For , we estimate , the smallest integer so that there is a sign-linear map which has the -restricted isometric property, where we impose the normalized geodesic distance on and the Hamming metric on . Up to a polylogarithmic factor, , which has a dimensional correction in the power of . This is a question that arises from the one-bit sensing literature, and the method of proof follows from geometric discrepancy theory. We also obtain an analogue of the Stolarsky invariance principle for this situation, which implies that minimizing the -average of the embedding error is equivalent to minimizing the discrete energy , where is the normalized geodesic distance. Bibliography: 39 titles.
doi_str_mv 10.1070/SM8656
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1070_SM8656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357588548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-9c1c0f29e45388043b9b3ed06a9e1d23e6bed3f84c32a2a4c9d8d3f81c738d543</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRsFb9DUFRL0ZnPzM5avELWnqonpfN7kZSYxJ300P_vSkRBPE078DDM8NLyCmFGwoZ3K4WqKTaIxMqFKYCge0PGZRIpaLqkBzFuAYAyShOiFo2Pi2qPom-iVXzfp24KtrgO9PYbWIal6z6tjYhfmyvYtKFqrFVV_tjclCaOvqTnzklb48Pr7PndL58epndzVPLAfs0t9RCyXIvJEcEwYu84N6BMrmnjnGvCu94icJyZpgRNne426nNODop-JScj94utF8bH3u9bjehGU5qxmUmEaXAgbocKRvaGIMv9fDopwlbTUHvOtFjJwN4MYJV2_2aFqt7zQC10pkQunPlwJ39w_2RfQMFqmls</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357588548</pqid></control><display><type>article</type><title>One-bit sensing, discrepancy and Stolarsky's principle</title><source>IOP Publishing Journals</source><source>Alma/SFX Local Collection</source><creator>Bilyk, D. ; Lacey, M. T.</creator><creatorcontrib>Bilyk, D. ; Lacey, M. T.</creatorcontrib><description>A sign-linear one-bit map from the -dimensional sphere to the -dimensional Hamming cube is given by where . For , we estimate , the smallest integer so that there is a sign-linear map which has the -restricted isometric property, where we impose the normalized geodesic distance on and the Hamming metric on . Up to a polylogarithmic factor, , which has a dimensional correction in the power of . This is a question that arises from the one-bit sensing literature, and the method of proof follows from geometric discrepancy theory. We also obtain an analogue of the Stolarsky invariance principle for this situation, which implies that minimizing the -average of the embedding error is equivalent to minimizing the discrete energy , where is the normalized geodesic distance. Bibliography: 39 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM8656</identifier><language>eng</language><publisher>Providence: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>discrepancy ; one-bit sensing ; restricted isometry property ; Stolarsky principle</subject><ispartof>Sbornik. Mathematics, 2017-06, Vol.208 (6), p.744-763</ispartof><rights>2017 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><rights>Copyright IOP Publishing Jun 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-9c1c0f29e45388043b9b3ed06a9e1d23e6bed3f84c32a2a4c9d8d3f81c738d543</citedby><cites>FETCH-LOGICAL-c308t-9c1c0f29e45388043b9b3ed06a9e1d23e6bed3f84c32a2a4c9d8d3f81c738d543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/SM8656/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824</link.rule.ids></links><search><creatorcontrib>Bilyk, D.</creatorcontrib><creatorcontrib>Lacey, M. T.</creatorcontrib><title>One-bit sensing, discrepancy and Stolarsky's principle</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>A sign-linear one-bit map from the -dimensional sphere to the -dimensional Hamming cube is given by where . For , we estimate , the smallest integer so that there is a sign-linear map which has the -restricted isometric property, where we impose the normalized geodesic distance on and the Hamming metric on . Up to a polylogarithmic factor, , which has a dimensional correction in the power of . This is a question that arises from the one-bit sensing literature, and the method of proof follows from geometric discrepancy theory. We also obtain an analogue of the Stolarsky invariance principle for this situation, which implies that minimizing the -average of the embedding error is equivalent to minimizing the discrete energy , where is the normalized geodesic distance. Bibliography: 39 titles.</description><subject>discrepancy</subject><subject>one-bit sensing</subject><subject>restricted isometry property</subject><subject>Stolarsky principle</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkE1Lw0AQhhdRsFb9DUFRL0ZnPzM5avELWnqonpfN7kZSYxJ300P_vSkRBPE078DDM8NLyCmFGwoZ3K4WqKTaIxMqFKYCge0PGZRIpaLqkBzFuAYAyShOiFo2Pi2qPom-iVXzfp24KtrgO9PYbWIal6z6tjYhfmyvYtKFqrFVV_tjclCaOvqTnzklb48Pr7PndL58epndzVPLAfs0t9RCyXIvJEcEwYu84N6BMrmnjnGvCu94icJyZpgRNne426nNODop-JScj94utF8bH3u9bjehGU5qxmUmEaXAgbocKRvaGIMv9fDopwlbTUHvOtFjJwN4MYJV2_2aFqt7zQC10pkQunPlwJ39w_2RfQMFqmls</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Bilyk, D.</creator><creator>Lacey, M. T.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20170601</creationdate><title>One-bit sensing, discrepancy and Stolarsky's principle</title><author>Bilyk, D. ; Lacey, M. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-9c1c0f29e45388043b9b3ed06a9e1d23e6bed3f84c32a2a4c9d8d3f81c738d543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>discrepancy</topic><topic>one-bit sensing</topic><topic>restricted isometry property</topic><topic>Stolarsky principle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilyk, D.</creatorcontrib><creatorcontrib>Lacey, M. T.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilyk, D.</au><au>Lacey, M. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-bit sensing, discrepancy and Stolarsky's principle</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>208</volume><issue>6</issue><spage>744</spage><epage>763</epage><pages>744-763</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>A sign-linear one-bit map from the -dimensional sphere to the -dimensional Hamming cube is given by where . For , we estimate , the smallest integer so that there is a sign-linear map which has the -restricted isometric property, where we impose the normalized geodesic distance on and the Hamming metric on . Up to a polylogarithmic factor, , which has a dimensional correction in the power of . This is a question that arises from the one-bit sensing literature, and the method of proof follows from geometric discrepancy theory. We also obtain an analogue of the Stolarsky invariance principle for this situation, which implies that minimizing the -average of the embedding error is equivalent to minimizing the discrete energy , where is the normalized geodesic distance. Bibliography: 39 titles.</abstract><cop>Providence</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM8656</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5616
ispartof Sbornik. Mathematics, 2017-06, Vol.208 (6), p.744-763
issn 1064-5616
1468-4802
language eng
recordid cdi_iop_journals_10_1070_SM8656
source IOP Publishing Journals; Alma/SFX Local Collection
subjects discrepancy
one-bit sensing
restricted isometry property
Stolarsky principle
title One-bit sensing, discrepancy and Stolarsky's principle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-bit%20sensing,%20discrepancy%20and%20Stolarsky's%20principle&rft.jtitle=Sbornik.%20Mathematics&rft.au=Bilyk,%20D.&rft.date=2017-06-01&rft.volume=208&rft.issue=6&rft.spage=744&rft.epage=763&rft.pages=744-763&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM8656&rft_dat=%3Cproquest_iop_j%3E2357588548%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357588548&rft_id=info:pmid/&rfr_iscdi=true