The growth of entire Dirichlet series in terms of generalized orders

Let be a continuous function which increases to on an infinite interval of the form . A necessary and sufficient condition is found on a sequence increasing to which ensures that for each Dirichlet series of the form , , which is absolutely convergent in the following relation holds: where and are t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sbornik. Mathematics 2018-02, Vol.209 (2), p.241-257
Hauptverfasser: Hlova, T. Ya, Filevych, P. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 257
container_issue 2
container_start_page 241
container_title Sbornik. Mathematics
container_volume 209
creator Hlova, T. Ya
Filevych, P. V.
description Let be a continuous function which increases to on an infinite interval of the form . A necessary and sufficient condition is found on a sequence increasing to which ensures that for each Dirichlet series of the form , , which is absolutely convergent in the following relation holds: where and are the maximum modulus and maximum term of the series, respectively. Bibliography: 10 titles.
doi_str_mv 10.1070/SM8644
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1070_SM8644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357588390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-15e37416f3d29cdaa3f295e88c7435c45c82cac03c18c5baeb2d5de7591578663</originalsourceid><addsrcrecordid>eNpt0EtLAzEUBeAgCtaqvyEouhvNezJLbX1Bi4vWdUiTO21KOzMmU0R_vVNGEMTVvYuPc-AgdE7JDSU5uZ1NtRLiAA2oUDoTmrDD7idKZFJRdYxOUloTQiSjeoDG8xXgZaw_2hWuSwxVGyLgcYjBrTbQ4gQxQMKhwi3EbdqbJVQQ7SZ8gcd19BDTKToq7SbB2c8dorfHh_noOZu8Pr2M7iaZ40S3GZXAc0FVyT0rnLeWl6yQoLXLBZdOSKeZs45wR7WTCwsL5qWHXBZU5lopPkSXfW4T6_cdpNas612sukrDuMyl1rwgnbrulYt1ShFK08SwtfHTUGL2C5l-oQ5e9TDUzW_SdHZvGCkMM0xQ0_iycxf_uD9h3_Khbls</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357588390</pqid></control><display><type>article</type><title>The growth of entire Dirichlet series in terms of generalized orders</title><source>Institute of Physics Journals</source><source>Alma/SFX Local Collection</source><creator>Hlova, T. Ya ; Filevych, P. V.</creator><creatorcontrib>Hlova, T. Ya ; Filevych, P. V.</creatorcontrib><description>Let be a continuous function which increases to on an infinite interval of the form . A necessary and sufficient condition is found on a sequence increasing to which ensures that for each Dirichlet series of the form , , which is absolutely convergent in the following relation holds: where and are the maximum modulus and maximum term of the series, respectively. Bibliography: 10 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM8644</identifier><language>eng</language><publisher>Providence: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>Colon ; Continuity (mathematics) ; Dirichlet problem ; entire Dirichlet series ; generalized order ; maximum modulus ; maximum term</subject><ispartof>Sbornik. Mathematics, 2018-02, Vol.209 (2), p.241-257</ispartof><rights>2018 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><rights>Copyright IOP Publishing Feb 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-15e37416f3d29cdaa3f295e88c7435c45c82cac03c18c5baeb2d5de7591578663</citedby><cites>FETCH-LOGICAL-c308t-15e37416f3d29cdaa3f295e88c7435c45c82cac03c18c5baeb2d5de7591578663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/SM8644/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Hlova, T. Ya</creatorcontrib><creatorcontrib>Filevych, P. V.</creatorcontrib><title>The growth of entire Dirichlet series in terms of generalized orders</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>Let be a continuous function which increases to on an infinite interval of the form . A necessary and sufficient condition is found on a sequence increasing to which ensures that for each Dirichlet series of the form , , which is absolutely convergent in the following relation holds: where and are the maximum modulus and maximum term of the series, respectively. Bibliography: 10 titles.</description><subject>Colon</subject><subject>Continuity (mathematics)</subject><subject>Dirichlet problem</subject><subject>entire Dirichlet series</subject><subject>generalized order</subject><subject>maximum modulus</subject><subject>maximum term</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpt0EtLAzEUBeAgCtaqvyEouhvNezJLbX1Bi4vWdUiTO21KOzMmU0R_vVNGEMTVvYuPc-AgdE7JDSU5uZ1NtRLiAA2oUDoTmrDD7idKZFJRdYxOUloTQiSjeoDG8xXgZaw_2hWuSwxVGyLgcYjBrTbQ4gQxQMKhwi3EbdqbJVQQ7SZ8gcd19BDTKToq7SbB2c8dorfHh_noOZu8Pr2M7iaZ40S3GZXAc0FVyT0rnLeWl6yQoLXLBZdOSKeZs45wR7WTCwsL5qWHXBZU5lopPkSXfW4T6_cdpNas612sukrDuMyl1rwgnbrulYt1ShFK08SwtfHTUGL2C5l-oQ5e9TDUzW_SdHZvGCkMM0xQ0_iycxf_uD9h3_Khbls</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Hlova, T. Ya</creator><creator>Filevych, P. V.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20180201</creationdate><title>The growth of entire Dirichlet series in terms of generalized orders</title><author>Hlova, T. Ya ; Filevych, P. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-15e37416f3d29cdaa3f295e88c7435c45c82cac03c18c5baeb2d5de7591578663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Colon</topic><topic>Continuity (mathematics)</topic><topic>Dirichlet problem</topic><topic>entire Dirichlet series</topic><topic>generalized order</topic><topic>maximum modulus</topic><topic>maximum term</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hlova, T. Ya</creatorcontrib><creatorcontrib>Filevych, P. V.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hlova, T. Ya</au><au>Filevych, P. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The growth of entire Dirichlet series in terms of generalized orders</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>209</volume><issue>2</issue><spage>241</spage><epage>257</epage><pages>241-257</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>Let be a continuous function which increases to on an infinite interval of the form . A necessary and sufficient condition is found on a sequence increasing to which ensures that for each Dirichlet series of the form , , which is absolutely convergent in the following relation holds: where and are the maximum modulus and maximum term of the series, respectively. Bibliography: 10 titles.</abstract><cop>Providence</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM8644</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5616
ispartof Sbornik. Mathematics, 2018-02, Vol.209 (2), p.241-257
issn 1064-5616
1468-4802
language eng
recordid cdi_iop_journals_10_1070_SM8644
source Institute of Physics Journals; Alma/SFX Local Collection
subjects Colon
Continuity (mathematics)
Dirichlet problem
entire Dirichlet series
generalized order
maximum modulus
maximum term
title The growth of entire Dirichlet series in terms of generalized orders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20growth%20of%20entire%20Dirichlet%20series%20in%20terms%20of%20generalized%20orders&rft.jtitle=Sbornik.%20Mathematics&rft.au=Hlova,%20T.%20Ya&rft.date=2018-02-01&rft.volume=209&rft.issue=2&rft.spage=241&rft.epage=257&rft.pages=241-257&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM8644&rft_dat=%3Cproquest_iop_j%3E2357588390%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357588390&rft_id=info:pmid/&rfr_iscdi=true