The growth of entire Dirichlet series in terms of generalized orders
Let be a continuous function which increases to on an infinite interval of the form . A necessary and sufficient condition is found on a sequence increasing to which ensures that for each Dirichlet series of the form , , which is absolutely convergent in the following relation holds: where and are t...
Gespeichert in:
Veröffentlicht in: | Sbornik. Mathematics 2018-02, Vol.209 (2), p.241-257 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 257 |
---|---|
container_issue | 2 |
container_start_page | 241 |
container_title | Sbornik. Mathematics |
container_volume | 209 |
creator | Hlova, T. Ya Filevych, P. V. |
description | Let be a continuous function which increases to on an infinite interval of the form . A necessary and sufficient condition is found on a sequence increasing to which ensures that for each Dirichlet series of the form , , which is absolutely convergent in the following relation holds: where and are the maximum modulus and maximum term of the series, respectively. Bibliography: 10 titles. |
doi_str_mv | 10.1070/SM8644 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1070_SM8644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357588390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-15e37416f3d29cdaa3f295e88c7435c45c82cac03c18c5baeb2d5de7591578663</originalsourceid><addsrcrecordid>eNpt0EtLAzEUBeAgCtaqvyEouhvNezJLbX1Bi4vWdUiTO21KOzMmU0R_vVNGEMTVvYuPc-AgdE7JDSU5uZ1NtRLiAA2oUDoTmrDD7idKZFJRdYxOUloTQiSjeoDG8xXgZaw_2hWuSwxVGyLgcYjBrTbQ4gQxQMKhwi3EbdqbJVQQ7SZ8gcd19BDTKToq7SbB2c8dorfHh_noOZu8Pr2M7iaZ40S3GZXAc0FVyT0rnLeWl6yQoLXLBZdOSKeZs45wR7WTCwsL5qWHXBZU5lopPkSXfW4T6_cdpNas612sukrDuMyl1rwgnbrulYt1ShFK08SwtfHTUGL2C5l-oQ5e9TDUzW_SdHZvGCkMM0xQ0_iycxf_uD9h3_Khbls</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357588390</pqid></control><display><type>article</type><title>The growth of entire Dirichlet series in terms of generalized orders</title><source>Institute of Physics Journals</source><source>Alma/SFX Local Collection</source><creator>Hlova, T. Ya ; Filevych, P. V.</creator><creatorcontrib>Hlova, T. Ya ; Filevych, P. V.</creatorcontrib><description>Let be a continuous function which increases to on an infinite interval of the form . A necessary and sufficient condition is found on a sequence increasing to which ensures that for each Dirichlet series of the form , , which is absolutely convergent in the following relation holds: where and are the maximum modulus and maximum term of the series, respectively. Bibliography: 10 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM8644</identifier><language>eng</language><publisher>Providence: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>Colon ; Continuity (mathematics) ; Dirichlet problem ; entire Dirichlet series ; generalized order ; maximum modulus ; maximum term</subject><ispartof>Sbornik. Mathematics, 2018-02, Vol.209 (2), p.241-257</ispartof><rights>2018 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><rights>Copyright IOP Publishing Feb 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-15e37416f3d29cdaa3f295e88c7435c45c82cac03c18c5baeb2d5de7591578663</citedby><cites>FETCH-LOGICAL-c308t-15e37416f3d29cdaa3f295e88c7435c45c82cac03c18c5baeb2d5de7591578663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/SM8644/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Hlova, T. Ya</creatorcontrib><creatorcontrib>Filevych, P. V.</creatorcontrib><title>The growth of entire Dirichlet series in terms of generalized orders</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>Let be a continuous function which increases to on an infinite interval of the form . A necessary and sufficient condition is found on a sequence increasing to which ensures that for each Dirichlet series of the form , , which is absolutely convergent in the following relation holds: where and are the maximum modulus and maximum term of the series, respectively. Bibliography: 10 titles.</description><subject>Colon</subject><subject>Continuity (mathematics)</subject><subject>Dirichlet problem</subject><subject>entire Dirichlet series</subject><subject>generalized order</subject><subject>maximum modulus</subject><subject>maximum term</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpt0EtLAzEUBeAgCtaqvyEouhvNezJLbX1Bi4vWdUiTO21KOzMmU0R_vVNGEMTVvYuPc-AgdE7JDSU5uZ1NtRLiAA2oUDoTmrDD7idKZFJRdYxOUloTQiSjeoDG8xXgZaw_2hWuSwxVGyLgcYjBrTbQ4gQxQMKhwi3EbdqbJVQQ7SZ8gcd19BDTKToq7SbB2c8dorfHh_noOZu8Pr2M7iaZ40S3GZXAc0FVyT0rnLeWl6yQoLXLBZdOSKeZs45wR7WTCwsL5qWHXBZU5lopPkSXfW4T6_cdpNas612sukrDuMyl1rwgnbrulYt1ShFK08SwtfHTUGL2C5l-oQ5e9TDUzW_SdHZvGCkMM0xQ0_iycxf_uD9h3_Khbls</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Hlova, T. Ya</creator><creator>Filevych, P. V.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20180201</creationdate><title>The growth of entire Dirichlet series in terms of generalized orders</title><author>Hlova, T. Ya ; Filevych, P. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-15e37416f3d29cdaa3f295e88c7435c45c82cac03c18c5baeb2d5de7591578663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Colon</topic><topic>Continuity (mathematics)</topic><topic>Dirichlet problem</topic><topic>entire Dirichlet series</topic><topic>generalized order</topic><topic>maximum modulus</topic><topic>maximum term</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hlova, T. Ya</creatorcontrib><creatorcontrib>Filevych, P. V.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hlova, T. Ya</au><au>Filevych, P. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The growth of entire Dirichlet series in terms of generalized orders</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>209</volume><issue>2</issue><spage>241</spage><epage>257</epage><pages>241-257</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>Let be a continuous function which increases to on an infinite interval of the form . A necessary and sufficient condition is found on a sequence increasing to which ensures that for each Dirichlet series of the form , , which is absolutely convergent in the following relation holds: where and are the maximum modulus and maximum term of the series, respectively. Bibliography: 10 titles.</abstract><cop>Providence</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM8644</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5616 |
ispartof | Sbornik. Mathematics, 2018-02, Vol.209 (2), p.241-257 |
issn | 1064-5616 1468-4802 |
language | eng |
recordid | cdi_iop_journals_10_1070_SM8644 |
source | Institute of Physics Journals; Alma/SFX Local Collection |
subjects | Colon Continuity (mathematics) Dirichlet problem entire Dirichlet series generalized order maximum modulus maximum term |
title | The growth of entire Dirichlet series in terms of generalized orders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20growth%20of%20entire%20Dirichlet%20series%20in%20terms%20of%20generalized%20orders&rft.jtitle=Sbornik.%20Mathematics&rft.au=Hlova,%20T.%20Ya&rft.date=2018-02-01&rft.volume=209&rft.issue=2&rft.spage=241&rft.epage=257&rft.pages=241-257&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM8644&rft_dat=%3Cproquest_iop_j%3E2357588390%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357588390&rft_id=info:pmid/&rfr_iscdi=true |