The topology of integrable systems with incomplete fields

Liouville's theorem holds for Hamiltonian systems with complete Hamiltonian fields which possess a complete involutive system of first integrals; such systems are called Liouville-integrable. In this paper integrable systems with incomplete Hamiltonian fields are investigated. It is shown that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sbornik. Mathematics 2014-01, Vol.205 (9), p.1264-1278
1. Verfasser: Aleshkin, K. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1278
container_issue 9
container_start_page 1264
container_title Sbornik. Mathematics
container_volume 205
creator Aleshkin, K. R.
description Liouville's theorem holds for Hamiltonian systems with complete Hamiltonian fields which possess a complete involutive system of first integrals; such systems are called Liouville-integrable. In this paper integrable systems with incomplete Hamiltonian fields are investigated. It is shown that Liouville's theorem remains valid in the case of a single incomplete field, while if the number of incomplete fields is greater, a certain analogue of the theorem holds. An integrable system on the algebra is taken as an example. Bibliography: 11 titles.
doi_str_mv 10.1070/SM2014v205n09ABEH004417
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1070_SM2014v205n09ABEH004417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744717661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-f72d602e5a9a70e98c02b51071f5067ee597f56810a1a3162d50db9962d5e1623</originalsourceid><addsrcrecordid>eNqNkE9Lw0AQxRdRsFY_gwFBvERnN_sne2xLtUKLh9bzkm4mbUqajdmt0m9vSjwqeJo3w-8NM4-QWwqPFBQ8LRcMKP9kIGrQo_F0BsA5VWdkQLlMY54CO-80SB4LSeUlufJ-BwCC0XRA9GqLUXCNq9zmGLkiKuuAmzZbVxj5ow-499FXGbbd3Lp9U2HAqCixyv01uSiyyuPNTx2S9-fpajKL528vr5PRPLaJTkJcKJZLYCgynSlAnVpga9FdTgsBUiEKrQohUwoZzRIqWS4gX2t9Eti1yZDc9XudD6Xxtgxot9bVNdpgGEskT_WJeuippnUfB_TB7EtvsaqyGt3BG6o4V1RJSTtU9ahtnfctFqZpy33WHg0Fc4rU_BFp50x6Z-kas3OHtu4e_4fr_hfXYjk2HWq0oUxy0-RF8g2VwoRt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744717661</pqid></control><display><type>article</type><title>The topology of integrable systems with incomplete fields</title><source>IOP Publishing Journals</source><source>Alma/SFX Local Collection</source><creator>Aleshkin, K. R.</creator><creatorcontrib>Aleshkin, K. R.</creatorcontrib><description>Liouville's theorem holds for Hamiltonian systems with complete Hamiltonian fields which possess a complete involutive system of first integrals; such systems are called Liouville-integrable. In this paper integrable systems with incomplete Hamiltonian fields are investigated. It is shown that Liouville's theorem remains valid in the case of a single incomplete field, while if the number of incomplete fields is greater, a certain analogue of the theorem holds. An integrable system on the algebra is taken as an example. Bibliography: 11 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM2014v205n09ABEH004417</identifier><language>eng</language><publisher>United States: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>ALGEBRA ; Analogue ; HAMILTONIANS ; incomplete fields ; integrable systems ; INTEGRAL CALCULUS ; INTEGRALS ; Lie algebras ; LIOUVILLE THEOREM ; Liouville's theorem ; Mathematical analysis ; MATHEMATICAL METHODS AND COMPUTING ; MATHEMATICAL SOLUTIONS ; SL GROUPS ; Theorems ; TOPOLOGY</subject><ispartof>Sbornik. Mathematics, 2014-01, Vol.205 (9), p.1264-1278</ispartof><rights>2014 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-f72d602e5a9a70e98c02b51071f5067ee597f56810a1a3162d50db9962d5e1623</citedby><cites>FETCH-LOGICAL-c393t-f72d602e5a9a70e98c02b51071f5067ee597f56810a1a3162d50db9962d5e1623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/SM2014v205n09ABEH004417/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27923,27924,53845</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22364892$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Aleshkin, K. R.</creatorcontrib><title>The topology of integrable systems with incomplete fields</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>Liouville's theorem holds for Hamiltonian systems with complete Hamiltonian fields which possess a complete involutive system of first integrals; such systems are called Liouville-integrable. In this paper integrable systems with incomplete Hamiltonian fields are investigated. It is shown that Liouville's theorem remains valid in the case of a single incomplete field, while if the number of incomplete fields is greater, a certain analogue of the theorem holds. An integrable system on the algebra is taken as an example. Bibliography: 11 titles.</description><subject>ALGEBRA</subject><subject>Analogue</subject><subject>HAMILTONIANS</subject><subject>incomplete fields</subject><subject>integrable systems</subject><subject>INTEGRAL CALCULUS</subject><subject>INTEGRALS</subject><subject>Lie algebras</subject><subject>LIOUVILLE THEOREM</subject><subject>Liouville's theorem</subject><subject>Mathematical analysis</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>SL GROUPS</subject><subject>Theorems</subject><subject>TOPOLOGY</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkE9Lw0AQxRdRsFY_gwFBvERnN_sne2xLtUKLh9bzkm4mbUqajdmt0m9vSjwqeJo3w-8NM4-QWwqPFBQ8LRcMKP9kIGrQo_F0BsA5VWdkQLlMY54CO-80SB4LSeUlufJ-BwCC0XRA9GqLUXCNq9zmGLkiKuuAmzZbVxj5ow-499FXGbbd3Lp9U2HAqCixyv01uSiyyuPNTx2S9-fpajKL528vr5PRPLaJTkJcKJZLYCgynSlAnVpga9FdTgsBUiEKrQohUwoZzRIqWS4gX2t9Eti1yZDc9XudD6Xxtgxot9bVNdpgGEskT_WJeuippnUfB_TB7EtvsaqyGt3BG6o4V1RJSTtU9ahtnfctFqZpy33WHg0Fc4rU_BFp50x6Z-kas3OHtu4e_4fr_hfXYjk2HWq0oUxy0-RF8g2VwoRt</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Aleshkin, K. R.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140101</creationdate><title>The topology of integrable systems with incomplete fields</title><author>Aleshkin, K. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-f72d602e5a9a70e98c02b51071f5067ee597f56810a1a3162d50db9962d5e1623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ALGEBRA</topic><topic>Analogue</topic><topic>HAMILTONIANS</topic><topic>incomplete fields</topic><topic>integrable systems</topic><topic>INTEGRAL CALCULUS</topic><topic>INTEGRALS</topic><topic>Lie algebras</topic><topic>LIOUVILLE THEOREM</topic><topic>Liouville's theorem</topic><topic>Mathematical analysis</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>SL GROUPS</topic><topic>Theorems</topic><topic>TOPOLOGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aleshkin, K. R.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aleshkin, K. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The topology of integrable systems with incomplete fields</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>205</volume><issue>9</issue><spage>1264</spage><epage>1278</epage><pages>1264-1278</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>Liouville's theorem holds for Hamiltonian systems with complete Hamiltonian fields which possess a complete involutive system of first integrals; such systems are called Liouville-integrable. In this paper integrable systems with incomplete Hamiltonian fields are investigated. It is shown that Liouville's theorem remains valid in the case of a single incomplete field, while if the number of incomplete fields is greater, a certain analogue of the theorem holds. An integrable system on the algebra is taken as an example. Bibliography: 11 titles.</abstract><cop>United States</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM2014v205n09ABEH004417</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5616
ispartof Sbornik. Mathematics, 2014-01, Vol.205 (9), p.1264-1278
issn 1064-5616
1468-4802
language eng
recordid cdi_iop_journals_10_1070_SM2014v205n09ABEH004417
source IOP Publishing Journals; Alma/SFX Local Collection
subjects ALGEBRA
Analogue
HAMILTONIANS
incomplete fields
integrable systems
INTEGRAL CALCULUS
INTEGRALS
Lie algebras
LIOUVILLE THEOREM
Liouville's theorem
Mathematical analysis
MATHEMATICAL METHODS AND COMPUTING
MATHEMATICAL SOLUTIONS
SL GROUPS
Theorems
TOPOLOGY
title The topology of integrable systems with incomplete fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20topology%20of%20integrable%20systems%20with%20incomplete%20fields&rft.jtitle=Sbornik.%20Mathematics&rft.au=Aleshkin,%20K.%20R.&rft.date=2014-01-01&rft.volume=205&rft.issue=9&rft.spage=1264&rft.epage=1278&rft.pages=1264-1278&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM2014v205n09ABEH004417&rft_dat=%3Cproquest_iop_j%3E1744717661%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744717661&rft_id=info:pmid/&rfr_iscdi=true