The topology of integrable systems with incomplete fields
Liouville's theorem holds for Hamiltonian systems with complete Hamiltonian fields which possess a complete involutive system of first integrals; such systems are called Liouville-integrable. In this paper integrable systems with incomplete Hamiltonian fields are investigated. It is shown that...
Gespeichert in:
Veröffentlicht in: | Sbornik. Mathematics 2014-01, Vol.205 (9), p.1264-1278 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1278 |
---|---|
container_issue | 9 |
container_start_page | 1264 |
container_title | Sbornik. Mathematics |
container_volume | 205 |
creator | Aleshkin, K. R. |
description | Liouville's theorem holds for Hamiltonian systems with complete Hamiltonian fields which possess a complete involutive system of first integrals; such systems are called Liouville-integrable. In this paper integrable systems with incomplete Hamiltonian fields are investigated. It is shown that Liouville's theorem remains valid in the case of a single incomplete field, while if the number of incomplete fields is greater, a certain analogue of the theorem holds. An integrable system on the algebra is taken as an example. Bibliography: 11 titles. |
doi_str_mv | 10.1070/SM2014v205n09ABEH004417 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1070_SM2014v205n09ABEH004417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744717661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-f72d602e5a9a70e98c02b51071f5067ee597f56810a1a3162d50db9962d5e1623</originalsourceid><addsrcrecordid>eNqNkE9Lw0AQxRdRsFY_gwFBvERnN_sne2xLtUKLh9bzkm4mbUqajdmt0m9vSjwqeJo3w-8NM4-QWwqPFBQ8LRcMKP9kIGrQo_F0BsA5VWdkQLlMY54CO-80SB4LSeUlufJ-BwCC0XRA9GqLUXCNq9zmGLkiKuuAmzZbVxj5ow-499FXGbbd3Lp9U2HAqCixyv01uSiyyuPNTx2S9-fpajKL528vr5PRPLaJTkJcKJZLYCgynSlAnVpga9FdTgsBUiEKrQohUwoZzRIqWS4gX2t9Eti1yZDc9XudD6Xxtgxot9bVNdpgGEskT_WJeuippnUfB_TB7EtvsaqyGt3BG6o4V1RJSTtU9ahtnfctFqZpy33WHg0Fc4rU_BFp50x6Z-kas3OHtu4e_4fr_hfXYjk2HWq0oUxy0-RF8g2VwoRt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744717661</pqid></control><display><type>article</type><title>The topology of integrable systems with incomplete fields</title><source>IOP Publishing Journals</source><source>Alma/SFX Local Collection</source><creator>Aleshkin, K. R.</creator><creatorcontrib>Aleshkin, K. R.</creatorcontrib><description>Liouville's theorem holds for Hamiltonian systems with complete Hamiltonian fields which possess a complete involutive system of first integrals; such systems are called Liouville-integrable. In this paper integrable systems with incomplete Hamiltonian fields are investigated. It is shown that Liouville's theorem remains valid in the case of a single incomplete field, while if the number of incomplete fields is greater, a certain analogue of the theorem holds. An integrable system on the algebra is taken as an example. Bibliography: 11 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM2014v205n09ABEH004417</identifier><language>eng</language><publisher>United States: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>ALGEBRA ; Analogue ; HAMILTONIANS ; incomplete fields ; integrable systems ; INTEGRAL CALCULUS ; INTEGRALS ; Lie algebras ; LIOUVILLE THEOREM ; Liouville's theorem ; Mathematical analysis ; MATHEMATICAL METHODS AND COMPUTING ; MATHEMATICAL SOLUTIONS ; SL GROUPS ; Theorems ; TOPOLOGY</subject><ispartof>Sbornik. Mathematics, 2014-01, Vol.205 (9), p.1264-1278</ispartof><rights>2014 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-f72d602e5a9a70e98c02b51071f5067ee597f56810a1a3162d50db9962d5e1623</citedby><cites>FETCH-LOGICAL-c393t-f72d602e5a9a70e98c02b51071f5067ee597f56810a1a3162d50db9962d5e1623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/SM2014v205n09ABEH004417/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27923,27924,53845</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22364892$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Aleshkin, K. R.</creatorcontrib><title>The topology of integrable systems with incomplete fields</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>Liouville's theorem holds for Hamiltonian systems with complete Hamiltonian fields which possess a complete involutive system of first integrals; such systems are called Liouville-integrable. In this paper integrable systems with incomplete Hamiltonian fields are investigated. It is shown that Liouville's theorem remains valid in the case of a single incomplete field, while if the number of incomplete fields is greater, a certain analogue of the theorem holds. An integrable system on the algebra is taken as an example. Bibliography: 11 titles.</description><subject>ALGEBRA</subject><subject>Analogue</subject><subject>HAMILTONIANS</subject><subject>incomplete fields</subject><subject>integrable systems</subject><subject>INTEGRAL CALCULUS</subject><subject>INTEGRALS</subject><subject>Lie algebras</subject><subject>LIOUVILLE THEOREM</subject><subject>Liouville's theorem</subject><subject>Mathematical analysis</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>SL GROUPS</subject><subject>Theorems</subject><subject>TOPOLOGY</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkE9Lw0AQxRdRsFY_gwFBvERnN_sne2xLtUKLh9bzkm4mbUqajdmt0m9vSjwqeJo3w-8NM4-QWwqPFBQ8LRcMKP9kIGrQo_F0BsA5VWdkQLlMY54CO-80SB4LSeUlufJ-BwCC0XRA9GqLUXCNq9zmGLkiKuuAmzZbVxj5ow-499FXGbbd3Lp9U2HAqCixyv01uSiyyuPNTx2S9-fpajKL528vr5PRPLaJTkJcKJZLYCgynSlAnVpga9FdTgsBUiEKrQohUwoZzRIqWS4gX2t9Eti1yZDc9XudD6Xxtgxot9bVNdpgGEskT_WJeuippnUfB_TB7EtvsaqyGt3BG6o4V1RJSTtU9ahtnfctFqZpy33WHg0Fc4rU_BFp50x6Z-kas3OHtu4e_4fr_hfXYjk2HWq0oUxy0-RF8g2VwoRt</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Aleshkin, K. R.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140101</creationdate><title>The topology of integrable systems with incomplete fields</title><author>Aleshkin, K. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-f72d602e5a9a70e98c02b51071f5067ee597f56810a1a3162d50db9962d5e1623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ALGEBRA</topic><topic>Analogue</topic><topic>HAMILTONIANS</topic><topic>incomplete fields</topic><topic>integrable systems</topic><topic>INTEGRAL CALCULUS</topic><topic>INTEGRALS</topic><topic>Lie algebras</topic><topic>LIOUVILLE THEOREM</topic><topic>Liouville's theorem</topic><topic>Mathematical analysis</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>SL GROUPS</topic><topic>Theorems</topic><topic>TOPOLOGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aleshkin, K. R.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aleshkin, K. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The topology of integrable systems with incomplete fields</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>205</volume><issue>9</issue><spage>1264</spage><epage>1278</epage><pages>1264-1278</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>Liouville's theorem holds for Hamiltonian systems with complete Hamiltonian fields which possess a complete involutive system of first integrals; such systems are called Liouville-integrable. In this paper integrable systems with incomplete Hamiltonian fields are investigated. It is shown that Liouville's theorem remains valid in the case of a single incomplete field, while if the number of incomplete fields is greater, a certain analogue of the theorem holds. An integrable system on the algebra is taken as an example. Bibliography: 11 titles.</abstract><cop>United States</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM2014v205n09ABEH004417</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5616 |
ispartof | Sbornik. Mathematics, 2014-01, Vol.205 (9), p.1264-1278 |
issn | 1064-5616 1468-4802 |
language | eng |
recordid | cdi_iop_journals_10_1070_SM2014v205n09ABEH004417 |
source | IOP Publishing Journals; Alma/SFX Local Collection |
subjects | ALGEBRA Analogue HAMILTONIANS incomplete fields integrable systems INTEGRAL CALCULUS INTEGRALS Lie algebras LIOUVILLE THEOREM Liouville's theorem Mathematical analysis MATHEMATICAL METHODS AND COMPUTING MATHEMATICAL SOLUTIONS SL GROUPS Theorems TOPOLOGY |
title | The topology of integrable systems with incomplete fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20topology%20of%20integrable%20systems%20with%20incomplete%20fields&rft.jtitle=Sbornik.%20Mathematics&rft.au=Aleshkin,%20K.%20R.&rft.date=2014-01-01&rft.volume=205&rft.issue=9&rft.spage=1264&rft.epage=1278&rft.pages=1264-1278&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM2014v205n09ABEH004417&rft_dat=%3Cproquest_iop_j%3E1744717661%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744717661&rft_id=info:pmid/&rfr_iscdi=true |