A basis for a partially commutative metabelian group

We find explicitly a basis for the derived group of a partially commutative metabelian group and describe a canonical representation for the elements of the group.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Izvestiya. Mathematics 2021-08, Vol.85 (4), p.813-822
1. Verfasser: Timoshenko, E. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 822
container_issue 4
container_start_page 813
container_title Izvestiya. Mathematics
container_volume 85
creator Timoshenko, E. I.
description We find explicitly a basis for the derived group of a partially commutative metabelian group and describe a canonical representation for the elements of the group.
doi_str_mv 10.1070/IM9034
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1070_IM9034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569679574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-52883c5a3aa0a72d8c9e0a33d89c4d729bec3690ff8c4190da0ed49114cd27113</originalsourceid><addsrcrecordid>eNpt0EtLxDAUBeAgCo6v3xBU3FVvmrRJlsPgY2DEjbpwE-4kqXRoJzVphfn3Viq40NW9i49z4BByxuCagYSb5aMGLvbIjIlSZUIx2B9_KEVWlDw_JEcpbQBACMZnRMzpGlOdaBUiRdph7Gtsmh21oW2HHvv609PW97j2TY1b-h7D0J2Qgwqb5E9_7jF5ubt9Xjxkq6f75WK-yiwH2WdFrhS3BXJEQJk7ZbUH5NwpbYWTuV57y0sNVaWsYBocgndCMyasyyVj_JhcTLldDB-DT73ZhCFux0qTF6UupS6kGNXVpGwMKUVfmS7WLcadYWC-FzHTIiM8n2Adut-kP-jyH7R8ezWqMMIoxk3nKv4FPwZoJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569679574</pqid></control><display><type>article</type><title>A basis for a partially commutative metabelian group</title><source>Institute of Physics Journals</source><source>Alma/SFX Local Collection</source><creator>Timoshenko, E. I.</creator><creatorcontrib>Timoshenko, E. I.</creatorcontrib><description>We find explicitly a basis for the derived group of a partially commutative metabelian group and describe a canonical representation for the elements of the group.</description><identifier>ISSN: 1064-5632</identifier><identifier>EISSN: 1468-4810</identifier><identifier>DOI: 10.1070/IM9034</identifier><language>eng</language><publisher>Providence: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>basis ; canonical form ; metabelian group ; partially commutative group</subject><ispartof>Izvestiya. Mathematics, 2021-08, Vol.85 (4), p.813-822</ispartof><rights>2021 Russian Academy of Sciences (DoM) and London Mathematical Society</rights><rights>Copyright IOP Publishing Aug 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-52883c5a3aa0a72d8c9e0a33d89c4d729bec3690ff8c4190da0ed49114cd27113</citedby><cites>FETCH-LOGICAL-c307t-52883c5a3aa0a72d8c9e0a33d89c4d729bec3690ff8c4190da0ed49114cd27113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/IM9034/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821</link.rule.ids></links><search><creatorcontrib>Timoshenko, E. I.</creatorcontrib><title>A basis for a partially commutative metabelian group</title><title>Izvestiya. Mathematics</title><addtitle>IZV</addtitle><addtitle>Izv. Math</addtitle><description>We find explicitly a basis for the derived group of a partially commutative metabelian group and describe a canonical representation for the elements of the group.</description><subject>basis</subject><subject>canonical form</subject><subject>metabelian group</subject><subject>partially commutative group</subject><issn>1064-5632</issn><issn>1468-4810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpt0EtLxDAUBeAgCo6v3xBU3FVvmrRJlsPgY2DEjbpwE-4kqXRoJzVphfn3Viq40NW9i49z4BByxuCagYSb5aMGLvbIjIlSZUIx2B9_KEVWlDw_JEcpbQBACMZnRMzpGlOdaBUiRdph7Gtsmh21oW2HHvv609PW97j2TY1b-h7D0J2Qgwqb5E9_7jF5ubt9Xjxkq6f75WK-yiwH2WdFrhS3BXJEQJk7ZbUH5NwpbYWTuV57y0sNVaWsYBocgndCMyasyyVj_JhcTLldDB-DT73ZhCFux0qTF6UupS6kGNXVpGwMKUVfmS7WLcadYWC-FzHTIiM8n2Adut-kP-jyH7R8ezWqMMIoxk3nKv4FPwZoJw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Timoshenko, E. I.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210801</creationdate><title>A basis for a partially commutative metabelian group</title><author>Timoshenko, E. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-52883c5a3aa0a72d8c9e0a33d89c4d729bec3690ff8c4190da0ed49114cd27113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>basis</topic><topic>canonical form</topic><topic>metabelian group</topic><topic>partially commutative group</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timoshenko, E. I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Izvestiya. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timoshenko, E. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A basis for a partially commutative metabelian group</atitle><jtitle>Izvestiya. Mathematics</jtitle><stitle>IZV</stitle><addtitle>Izv. Math</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>85</volume><issue>4</issue><spage>813</spage><epage>822</epage><pages>813-822</pages><issn>1064-5632</issn><eissn>1468-4810</eissn><abstract>We find explicitly a basis for the derived group of a partially commutative metabelian group and describe a canonical representation for the elements of the group.</abstract><cop>Providence</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/IM9034</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5632
ispartof Izvestiya. Mathematics, 2021-08, Vol.85 (4), p.813-822
issn 1064-5632
1468-4810
language eng
recordid cdi_iop_journals_10_1070_IM9034
source Institute of Physics Journals; Alma/SFX Local Collection
subjects basis
canonical form
metabelian group
partially commutative group
title A basis for a partially commutative metabelian group
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T06%3A54%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20basis%20for%20a%20partially%20commutative%20metabelian%20group&rft.jtitle=Izvestiya.%20Mathematics&rft.au=Timoshenko,%20E.%20I.&rft.date=2021-08-01&rft.volume=85&rft.issue=4&rft.spage=813&rft.epage=822&rft.pages=813-822&rft.issn=1064-5632&rft.eissn=1468-4810&rft_id=info:doi/10.1070/IM9034&rft_dat=%3Cproquest_iop_j%3E2569679574%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569679574&rft_id=info:pmid/&rfr_iscdi=true