An approximate maximum likelihood procedure for parameter estimation in multivariate discrete data regression models

This paper considers an alternative to iterative procedures used to calculate maximum likelihood estimates of regression coefficients in a general class of discrete data regression models. These models can include both marginal and conditional models and also local regression models. The classical e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics 2001-02, Vol.28 (2), p.273-279
1. Verfasser: Roddam, Andrew W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers an alternative to iterative procedures used to calculate maximum likelihood estimates of regression coefficients in a general class of discrete data regression models. These models can include both marginal and conditional models and also local regression models. The classical estimation procedure is generally via a Fisher-scoring algorithm and can be computationally intensive for high-dimensional problems. The alternative method proposed here is non-iterative and is likely to be more efficient in high-dimensional problems. The method is demonstrated on two different classes of regression models.
ISSN:0266-4763
1360-0532
DOI:10.1080/02664760020016163