Expert system support using Bayesian belief networks in the prognosis of head-injured patients of the ICU

The present study concerns the construction and operation of a Bayesian analytical system, namely a Bayesian belief network (BBN) for the prognosis at 24 h of head-injured patients of the intensive care unit. The construction of a BBN incorporates the maintenance of a large database including all th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical informatics 1998, Vol.23 (1), p.1-18
Hauptverfasser: Nikiforidis, G. C., Sakellaropoulos, G. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 1
container_start_page 1
container_title Medical informatics
container_volume 23
creator Nikiforidis, G. C.
Sakellaropoulos, G. C.
description The present study concerns the construction and operation of a Bayesian analytical system, namely a Bayesian belief network (BBN) for the prognosis at 24 h of head-injured patients of the intensive care unit. The construction of a BBN incorporates the maintenance of a large database including all the critical variables corresponding to the specific clinical domain. This database is processed to provide the necessary libraries of conditional probability values. BBNs permit the combination of prognostic evidence in a cumulative manner and provide a quantitative measure of certainty in the final decision. The user views the changes at each step, thus being capable of deciding upon the necessary pieces of information in order to reach a certain belief threshold. The system produces results that are compatible with the opinions of medical experts regarding the prognosis of patients exhibiting certain patterns of clinical or laboratory data.
doi_str_mv 10.3109/14639239809001387
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_informahealthcare_journals_10_3109_14639239809001387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79925036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-ccd1985dad33ecd82217dac44fa45650cd270165d8529b49cee44839c84ddff23</originalsourceid><addsrcrecordid>eNp9kMtu3CAUhlHVKLf2AbqoxKo7J-ZiG9RumlFuUqRsmrXFwCHD1AYXsJJ5-zCZUaUoalfA-S86fAh9IfUZI7U8J7xlkjIpalnXhInuAzouM141lImPr3dWFYM4QicprYunFR09RIeyJaLt5DFyl88TxIzTJmUYcZqnKZTnnJx_xBdqA8kpj5cwOLDYQ34K8XfCzuO8AjzF8OhDcgkHi1egTOX8eo5g8KSyA59fha3zdvHwCR1YNST4vD9P0cPV5a_FTXV3f327-HlXac6aXGltiBSNUYYx0EZQSjqjNOdW8aZtam1oV77RGNFQueRSA3AumNSCG2MtZafo2663bPdnhpT70SUNw6A8hDn1nZS0qVlbjGRn1DGkFMH2U3Sjipue1P0Wb_8Ob8l83ZfPyxHM38SeZ9F_7HTnbYijKrgG02e1GUK0UXnt0rb63_Xf38QL0yGvtIrQr8McfeH2n-VeAJZMnB4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79925036</pqid></control><display><type>article</type><title>Expert system support using Bayesian belief networks in the prognosis of head-injured patients of the ICU</title><source>MEDLINE</source><source>Taylor &amp; Francis Medical Library - CRKN</source><source>Access via Taylor &amp; Francis</source><creator>Nikiforidis, G. C. ; Sakellaropoulos, G. C.</creator><creatorcontrib>Nikiforidis, G. C. ; Sakellaropoulos, G. C.</creatorcontrib><description>The present study concerns the construction and operation of a Bayesian analytical system, namely a Bayesian belief network (BBN) for the prognosis at 24 h of head-injured patients of the intensive care unit. The construction of a BBN incorporates the maintenance of a large database including all the critical variables corresponding to the specific clinical domain. This database is processed to provide the necessary libraries of conditional probability values. BBNs permit the combination of prognostic evidence in a cumulative manner and provide a quantitative measure of certainty in the final decision. The user views the changes at each step, thus being capable of deciding upon the necessary pieces of information in order to reach a certain belief threshold. The system produces results that are compatible with the opinions of medical experts regarding the prognosis of patients exhibiting certain patterns of clinical or laboratory data.</description><identifier>ISSN: 1463-9238</identifier><identifier>ISSN: 0307-7640</identifier><identifier>EISSN: 1464-5238</identifier><identifier>DOI: 10.3109/14639239809001387</identifier><identifier>PMID: 9618679</identifier><language>eng</language><publisher>England: Informa UK Ltd</publisher><subject>Adult ; Artificial Intelligence ; Bayes Theorem ; Belief networks ; Brain Injuries - classification ; Brain Injuries - diagnosis ; Brain Injuries - mortality ; Databases, Factual ; Decision Making, Computer-Assisted ; Expert system ; Expert Systems ; Female ; Glasgow Coma Scale ; Head injury ; Hospital Mortality ; Humans ; Intensive Care Units ; Male ; Middle Aged ; Neural Networks (Computer) ; Probability ; Prognosis ; Software</subject><ispartof>Medical informatics, 1998, Vol.23 (1), p.1-18</ispartof><rights>1998 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted 1998</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-ccd1985dad33ecd82217dac44fa45650cd270165d8529b49cee44839c84ddff23</citedby><cites>FETCH-LOGICAL-c435t-ccd1985dad33ecd82217dac44fa45650cd270165d8529b49cee44839c84ddff23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.3109/14639239809001387$$EPDF$$P50$$Ginformahealthcare$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.3109/14639239809001387$$EHTML$$P50$$Ginformahealthcare$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,61221,61256,61402,61437</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9618679$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nikiforidis, G. C.</creatorcontrib><creatorcontrib>Sakellaropoulos, G. C.</creatorcontrib><title>Expert system support using Bayesian belief networks in the prognosis of head-injured patients of the ICU</title><title>Medical informatics</title><addtitle>Med Inform (Lond)</addtitle><description>The present study concerns the construction and operation of a Bayesian analytical system, namely a Bayesian belief network (BBN) for the prognosis at 24 h of head-injured patients of the intensive care unit. The construction of a BBN incorporates the maintenance of a large database including all the critical variables corresponding to the specific clinical domain. This database is processed to provide the necessary libraries of conditional probability values. BBNs permit the combination of prognostic evidence in a cumulative manner and provide a quantitative measure of certainty in the final decision. The user views the changes at each step, thus being capable of deciding upon the necessary pieces of information in order to reach a certain belief threshold. The system produces results that are compatible with the opinions of medical experts regarding the prognosis of patients exhibiting certain patterns of clinical or laboratory data.</description><subject>Adult</subject><subject>Artificial Intelligence</subject><subject>Bayes Theorem</subject><subject>Belief networks</subject><subject>Brain Injuries - classification</subject><subject>Brain Injuries - diagnosis</subject><subject>Brain Injuries - mortality</subject><subject>Databases, Factual</subject><subject>Decision Making, Computer-Assisted</subject><subject>Expert system</subject><subject>Expert Systems</subject><subject>Female</subject><subject>Glasgow Coma Scale</subject><subject>Head injury</subject><subject>Hospital Mortality</subject><subject>Humans</subject><subject>Intensive Care Units</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Neural Networks (Computer)</subject><subject>Probability</subject><subject>Prognosis</subject><subject>Software</subject><issn>1463-9238</issn><issn>0307-7640</issn><issn>1464-5238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtu3CAUhlHVKLf2AbqoxKo7J-ZiG9RumlFuUqRsmrXFwCHD1AYXsJJ5-zCZUaUoalfA-S86fAh9IfUZI7U8J7xlkjIpalnXhInuAzouM141lImPr3dWFYM4QicprYunFR09RIeyJaLt5DFyl88TxIzTJmUYcZqnKZTnnJx_xBdqA8kpj5cwOLDYQ34K8XfCzuO8AjzF8OhDcgkHi1egTOX8eo5g8KSyA59fha3zdvHwCR1YNST4vD9P0cPV5a_FTXV3f327-HlXac6aXGltiBSNUYYx0EZQSjqjNOdW8aZtam1oV77RGNFQueRSA3AumNSCG2MtZafo2663bPdnhpT70SUNw6A8hDn1nZS0qVlbjGRn1DGkFMH2U3Sjipue1P0Wb_8Ob8l83ZfPyxHM38SeZ9F_7HTnbYijKrgG02e1GUK0UXnt0rb63_Xf38QL0yGvtIrQr8McfeH2n-VeAJZMnB4</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Nikiforidis, G. C.</creator><creator>Sakellaropoulos, G. C.</creator><general>Informa UK Ltd</general><general>Taylor &amp; Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>1998</creationdate><title>Expert system support using Bayesian belief networks in the prognosis of head-injured patients of the ICU</title><author>Nikiforidis, G. C. ; Sakellaropoulos, G. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-ccd1985dad33ecd82217dac44fa45650cd270165d8529b49cee44839c84ddff23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Adult</topic><topic>Artificial Intelligence</topic><topic>Bayes Theorem</topic><topic>Belief networks</topic><topic>Brain Injuries - classification</topic><topic>Brain Injuries - diagnosis</topic><topic>Brain Injuries - mortality</topic><topic>Databases, Factual</topic><topic>Decision Making, Computer-Assisted</topic><topic>Expert system</topic><topic>Expert Systems</topic><topic>Female</topic><topic>Glasgow Coma Scale</topic><topic>Head injury</topic><topic>Hospital Mortality</topic><topic>Humans</topic><topic>Intensive Care Units</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Neural Networks (Computer)</topic><topic>Probability</topic><topic>Prognosis</topic><topic>Software</topic><toplevel>online_resources</toplevel><creatorcontrib>Nikiforidis, G. C.</creatorcontrib><creatorcontrib>Sakellaropoulos, G. C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikiforidis, G. C.</au><au>Sakellaropoulos, G. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expert system support using Bayesian belief networks in the prognosis of head-injured patients of the ICU</atitle><jtitle>Medical informatics</jtitle><addtitle>Med Inform (Lond)</addtitle><date>1998</date><risdate>1998</risdate><volume>23</volume><issue>1</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>1463-9238</issn><issn>0307-7640</issn><eissn>1464-5238</eissn><abstract>The present study concerns the construction and operation of a Bayesian analytical system, namely a Bayesian belief network (BBN) for the prognosis at 24 h of head-injured patients of the intensive care unit. The construction of a BBN incorporates the maintenance of a large database including all the critical variables corresponding to the specific clinical domain. This database is processed to provide the necessary libraries of conditional probability values. BBNs permit the combination of prognostic evidence in a cumulative manner and provide a quantitative measure of certainty in the final decision. The user views the changes at each step, thus being capable of deciding upon the necessary pieces of information in order to reach a certain belief threshold. The system produces results that are compatible with the opinions of medical experts regarding the prognosis of patients exhibiting certain patterns of clinical or laboratory data.</abstract><cop>England</cop><pub>Informa UK Ltd</pub><pmid>9618679</pmid><doi>10.3109/14639239809001387</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9238
ispartof Medical informatics, 1998, Vol.23 (1), p.1-18
issn 1463-9238
0307-7640
1464-5238
language eng
recordid cdi_informahealthcare_journals_10_3109_14639239809001387
source MEDLINE; Taylor & Francis Medical Library - CRKN; Access via Taylor & Francis
subjects Adult
Artificial Intelligence
Bayes Theorem
Belief networks
Brain Injuries - classification
Brain Injuries - diagnosis
Brain Injuries - mortality
Databases, Factual
Decision Making, Computer-Assisted
Expert system
Expert Systems
Female
Glasgow Coma Scale
Head injury
Hospital Mortality
Humans
Intensive Care Units
Male
Middle Aged
Neural Networks (Computer)
Probability
Prognosis
Software
title Expert system support using Bayesian belief networks in the prognosis of head-injured patients of the ICU
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A15%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expert%20system%20support%20using%20Bayesian%20belief%20networks%20in%20the%20prognosis%20of%20head-injured%20patients%20of%20the%20ICU&rft.jtitle=Medical%20informatics&rft.au=Nikiforidis,%20G.%20C.&rft.date=1998&rft.volume=23&rft.issue=1&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=1463-9238&rft.eissn=1464-5238&rft_id=info:doi/10.3109/14639239809001387&rft_dat=%3Cproquest_infor%3E79925036%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79925036&rft_id=info:pmid/9618679&rfr_iscdi=true