Effects of Power Frequency Electromagnetic Fields on Growth of Germinating Vicia faba L., the Broad Bean
Experimental investigations were carried out to evaluate the effect of continuous and delayed exposure of power frequency electromagnetic fields at 5, 50 and 100 μT on germinating Vicia faba seedlings as a model system. These studies included physical parameters (length and girth of primary roots, n...
Gespeichert in:
Veröffentlicht in: | Electromagnetic biology and medicine 2005, Vol.24 (1), p.39-54 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 54 |
---|---|
container_issue | 1 |
container_start_page | 39 |
container_title | Electromagnetic biology and medicine |
container_volume | 24 |
creator | Rajendra, P. Sujatha Nayak, H. Sashidhar, R. B. Subramanyam, C. Devendranath, D. Gunasekaran, B. Aradhya, R. S. S. Bhaskaran, A. |
description | Experimental investigations were carried out to evaluate the effect of continuous and delayed exposure of power frequency electromagnetic fields at 5, 50 and 100 μT on germinating Vicia faba seedlings as a model system. These studies included physical parameters (length and girth of primary roots, number as well as length of lateral roots and imbibition), major biochemical constituents (total sugar, protein, and fat) and activities of important housekeeping enzymes (amylases, proteases, and lipase) at 2, 4, and 8 days of growth. Also, mitotic index and rate of DNA synthesis were studied at day 8 of growth. There was no significant change in physical parameters and major biochemical constituents between control and experimental groups. Also, the comparison between the control and experimental group of seeds showed that α-amylase activity significantly decreased at 5, 50 and 100 μT on day 2 and 4 of growth. β-amylase and protease (37 C & 50 C) showed a significant decrease in activity on day 2 and 4 of growth at 100 μT, whereas activity of lipase significantly decreased only on day 2 of growth at 100 μT. At day 8 of growth, all enzyme activities reverted back to the same as control. Also, there was a significant increase in mitotic index as well as 3H-thymidine uptake at 100 μT delayed exposure on day 8. The present study suggests that exposure to power frequency electromagnetic fields up to 100 μT on germinating seedlings does not cause any permanent damage since the initial alteration under the magnetic fields in some important housekeeping enzymes involved in the onset of seed germination were returened to control values on day 8 of growth. Also, the growth of the germinated seedlings was found to be enhanced by the application of power frequency magnetic fields (100 μT) as evidenced by mitotic index and 3H-thymidine uptake. |
doi_str_mv | 10.1081/JBC-200055058 |
format | Article |
fullrecord | <record><control><sourceid>informahealthcare_cross</sourceid><recordid>TN_cdi_informahealthcare_journals_10_1081_JBC_200055058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1081_JBC_200055058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-6922753fa6996dc2958402ca3e8f4206fca55ee7d398ca95ae74ec45bf1183413</originalsourceid><addsrcrecordid>eNp1kMFOwzAMhiMEEmNw5J4HoCNpmjY9smkboElwAK6Rlzprpi6BtNO0t6fT0CQOO9mS_8-WP0LuORtxpvjj63iSpIwxKZlUF2TApcgTJVR-eeoLdU1u2nbNGC8LJgaknlqLpmtpsPQ97DDSWcSfLXqzp9Omn8SwgZXHzhk6c9hUfdLTeQy7rj4wc4wb56FzfkW_nHFALSyBLkYPtKuRjmOAio4R_C25stC0ePdXh-RzNv2YPCeLt_nL5GmRGCGyLsnLNC2ksJCXZV6ZtJQqY6kBgcpmKcutASkRi0qUykApAYsMTSaXlnMlMi6GJDnuNTG0bUSrv6PbQNxrzvRBk-416ZOmPq-OeedtiBvYhdhUuoN9E6KN4I1rtTiHFv_QGqHpagMR9Tpso-_fPHP0F0B9flQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of Power Frequency Electromagnetic Fields on Growth of Germinating Vicia faba L., the Broad Bean</title><source>Taylor & Francis:Master (3349 titles)</source><source>Taylor & Francis Medical Library - CRKN</source><creator>Rajendra, P. ; Sujatha Nayak, H. ; Sashidhar, R. B. ; Subramanyam, C. ; Devendranath, D. ; Gunasekaran, B. ; Aradhya, R. S. S. ; Bhaskaran, A.</creator><creatorcontrib>Rajendra, P. ; Sujatha Nayak, H. ; Sashidhar, R. B. ; Subramanyam, C. ; Devendranath, D. ; Gunasekaran, B. ; Aradhya, R. S. S. ; Bhaskaran, A.</creatorcontrib><description>Experimental investigations were carried out to evaluate the effect of continuous and delayed exposure of power frequency electromagnetic fields at 5, 50 and 100 μT on germinating Vicia faba seedlings as a model system. These studies included physical parameters (length and girth of primary roots, number as well as length of lateral roots and imbibition), major biochemical constituents (total sugar, protein, and fat) and activities of important housekeeping enzymes (amylases, proteases, and lipase) at 2, 4, and 8 days of growth. Also, mitotic index and rate of DNA synthesis were studied at day 8 of growth. There was no significant change in physical parameters and major biochemical constituents between control and experimental groups. Also, the comparison between the control and experimental group of seeds showed that α-amylase activity significantly decreased at 5, 50 and 100 μT on day 2 and 4 of growth. β-amylase and protease (37 C & 50 C) showed a significant decrease in activity on day 2 and 4 of growth at 100 μT, whereas activity of lipase significantly decreased only on day 2 of growth at 100 μT. At day 8 of growth, all enzyme activities reverted back to the same as control. Also, there was a significant increase in mitotic index as well as 3H-thymidine uptake at 100 μT delayed exposure on day 8. The present study suggests that exposure to power frequency electromagnetic fields up to 100 μT on germinating seedlings does not cause any permanent damage since the initial alteration under the magnetic fields in some important housekeeping enzymes involved in the onset of seed germination were returened to control values on day 8 of growth. Also, the growth of the germinated seedlings was found to be enhanced by the application of power frequency magnetic fields (100 μT) as evidenced by mitotic index and 3H-thymidine uptake.</description><identifier>ISSN: 1536-8378</identifier><identifier>EISSN: 1536-8386</identifier><identifier>DOI: 10.1081/JBC-200055058</identifier><language>eng</language><publisher>Informa UK Ltd</publisher><subject>Enzymes ; H-thymidine uptake ; Magnetic fields ; Major biochemical constituents ; Mitotic index ; Physical parameters</subject><ispartof>Electromagnetic biology and medicine, 2005, Vol.24 (1), p.39-54</ispartof><rights>2005 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-6922753fa6996dc2958402ca3e8f4206fca55ee7d398ca95ae74ec45bf1183413</citedby><cites>FETCH-LOGICAL-c334t-6922753fa6996dc2958402ca3e8f4206fca55ee7d398ca95ae74ec45bf1183413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1081/JBC-200055058$$EPDF$$P50$$Ginformahealthcare$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1081/JBC-200055058$$EHTML$$P50$$Ginformahealthcare$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,59620,59726,60409,60515,61194,61229,61375,61410</link.rule.ids></links><search><creatorcontrib>Rajendra, P.</creatorcontrib><creatorcontrib>Sujatha Nayak, H.</creatorcontrib><creatorcontrib>Sashidhar, R. B.</creatorcontrib><creatorcontrib>Subramanyam, C.</creatorcontrib><creatorcontrib>Devendranath, D.</creatorcontrib><creatorcontrib>Gunasekaran, B.</creatorcontrib><creatorcontrib>Aradhya, R. S. S.</creatorcontrib><creatorcontrib>Bhaskaran, A.</creatorcontrib><title>Effects of Power Frequency Electromagnetic Fields on Growth of Germinating Vicia faba L., the Broad Bean</title><title>Electromagnetic biology and medicine</title><description>Experimental investigations were carried out to evaluate the effect of continuous and delayed exposure of power frequency electromagnetic fields at 5, 50 and 100 μT on germinating Vicia faba seedlings as a model system. These studies included physical parameters (length and girth of primary roots, number as well as length of lateral roots and imbibition), major biochemical constituents (total sugar, protein, and fat) and activities of important housekeeping enzymes (amylases, proteases, and lipase) at 2, 4, and 8 days of growth. Also, mitotic index and rate of DNA synthesis were studied at day 8 of growth. There was no significant change in physical parameters and major biochemical constituents between control and experimental groups. Also, the comparison between the control and experimental group of seeds showed that α-amylase activity significantly decreased at 5, 50 and 100 μT on day 2 and 4 of growth. β-amylase and protease (37 C & 50 C) showed a significant decrease in activity on day 2 and 4 of growth at 100 μT, whereas activity of lipase significantly decreased only on day 2 of growth at 100 μT. At day 8 of growth, all enzyme activities reverted back to the same as control. Also, there was a significant increase in mitotic index as well as 3H-thymidine uptake at 100 μT delayed exposure on day 8. The present study suggests that exposure to power frequency electromagnetic fields up to 100 μT on germinating seedlings does not cause any permanent damage since the initial alteration under the magnetic fields in some important housekeeping enzymes involved in the onset of seed germination were returened to control values on day 8 of growth. Also, the growth of the germinated seedlings was found to be enhanced by the application of power frequency magnetic fields (100 μT) as evidenced by mitotic index and 3H-thymidine uptake.</description><subject>Enzymes</subject><subject>H-thymidine uptake</subject><subject>Magnetic fields</subject><subject>Major biochemical constituents</subject><subject>Mitotic index</subject><subject>Physical parameters</subject><issn>1536-8378</issn><issn>1536-8386</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAMhiMEEmNw5J4HoCNpmjY9smkboElwAK6Rlzprpi6BtNO0t6fT0CQOO9mS_8-WP0LuORtxpvjj63iSpIwxKZlUF2TApcgTJVR-eeoLdU1u2nbNGC8LJgaknlqLpmtpsPQ97DDSWcSfLXqzp9Omn8SwgZXHzhk6c9hUfdLTeQy7rj4wc4wb56FzfkW_nHFALSyBLkYPtKuRjmOAio4R_C25stC0ePdXh-RzNv2YPCeLt_nL5GmRGCGyLsnLNC2ksJCXZV6ZtJQqY6kBgcpmKcutASkRi0qUykApAYsMTSaXlnMlMi6GJDnuNTG0bUSrv6PbQNxrzvRBk-416ZOmPq-OeedtiBvYhdhUuoN9E6KN4I1rtTiHFv_QGqHpagMR9Tpso-_fPHP0F0B9flQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Rajendra, P.</creator><creator>Sujatha Nayak, H.</creator><creator>Sashidhar, R. B.</creator><creator>Subramanyam, C.</creator><creator>Devendranath, D.</creator><creator>Gunasekaran, B.</creator><creator>Aradhya, R. S. S.</creator><creator>Bhaskaran, A.</creator><general>Informa UK Ltd</general><general>Taylor & Francis</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2005</creationdate><title>Effects of Power Frequency Electromagnetic Fields on Growth of Germinating Vicia faba L., the Broad Bean</title><author>Rajendra, P. ; Sujatha Nayak, H. ; Sashidhar, R. B. ; Subramanyam, C. ; Devendranath, D. ; Gunasekaran, B. ; Aradhya, R. S. S. ; Bhaskaran, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-6922753fa6996dc2958402ca3e8f4206fca55ee7d398ca95ae74ec45bf1183413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Enzymes</topic><topic>H-thymidine uptake</topic><topic>Magnetic fields</topic><topic>Major biochemical constituents</topic><topic>Mitotic index</topic><topic>Physical parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajendra, P.</creatorcontrib><creatorcontrib>Sujatha Nayak, H.</creatorcontrib><creatorcontrib>Sashidhar, R. B.</creatorcontrib><creatorcontrib>Subramanyam, C.</creatorcontrib><creatorcontrib>Devendranath, D.</creatorcontrib><creatorcontrib>Gunasekaran, B.</creatorcontrib><creatorcontrib>Aradhya, R. S. S.</creatorcontrib><creatorcontrib>Bhaskaran, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Electromagnetic biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajendra, P.</au><au>Sujatha Nayak, H.</au><au>Sashidhar, R. B.</au><au>Subramanyam, C.</au><au>Devendranath, D.</au><au>Gunasekaran, B.</au><au>Aradhya, R. S. S.</au><au>Bhaskaran, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Power Frequency Electromagnetic Fields on Growth of Germinating Vicia faba L., the Broad Bean</atitle><jtitle>Electromagnetic biology and medicine</jtitle><date>2005</date><risdate>2005</risdate><volume>24</volume><issue>1</issue><spage>39</spage><epage>54</epage><pages>39-54</pages><issn>1536-8378</issn><eissn>1536-8386</eissn><abstract>Experimental investigations were carried out to evaluate the effect of continuous and delayed exposure of power frequency electromagnetic fields at 5, 50 and 100 μT on germinating Vicia faba seedlings as a model system. These studies included physical parameters (length and girth of primary roots, number as well as length of lateral roots and imbibition), major biochemical constituents (total sugar, protein, and fat) and activities of important housekeeping enzymes (amylases, proteases, and lipase) at 2, 4, and 8 days of growth. Also, mitotic index and rate of DNA synthesis were studied at day 8 of growth. There was no significant change in physical parameters and major biochemical constituents between control and experimental groups. Also, the comparison between the control and experimental group of seeds showed that α-amylase activity significantly decreased at 5, 50 and 100 μT on day 2 and 4 of growth. β-amylase and protease (37 C & 50 C) showed a significant decrease in activity on day 2 and 4 of growth at 100 μT, whereas activity of lipase significantly decreased only on day 2 of growth at 100 μT. At day 8 of growth, all enzyme activities reverted back to the same as control. Also, there was a significant increase in mitotic index as well as 3H-thymidine uptake at 100 μT delayed exposure on day 8. The present study suggests that exposure to power frequency electromagnetic fields up to 100 μT on germinating seedlings does not cause any permanent damage since the initial alteration under the magnetic fields in some important housekeeping enzymes involved in the onset of seed germination were returened to control values on day 8 of growth. Also, the growth of the germinated seedlings was found to be enhanced by the application of power frequency magnetic fields (100 μT) as evidenced by mitotic index and 3H-thymidine uptake.</abstract><pub>Informa UK Ltd</pub><doi>10.1081/JBC-200055058</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-8378 |
ispartof | Electromagnetic biology and medicine, 2005, Vol.24 (1), p.39-54 |
issn | 1536-8378 1536-8386 |
language | eng |
recordid | cdi_informahealthcare_journals_10_1081_JBC_200055058 |
source | Taylor & Francis:Master (3349 titles); Taylor & Francis Medical Library - CRKN |
subjects | Enzymes H-thymidine uptake Magnetic fields Major biochemical constituents Mitotic index Physical parameters |
title | Effects of Power Frequency Electromagnetic Fields on Growth of Germinating Vicia faba L., the Broad Bean |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A55%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-informahealthcare_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Power%20Frequency%20Electromagnetic%20Fields%20on%20Growth%20of%20Germinating%20Vicia%20faba%20L.,%20the%20Broad%20Bean&rft.jtitle=Electromagnetic%20biology%20and%20medicine&rft.au=Rajendra,%20P.&rft.date=2005&rft.volume=24&rft.issue=1&rft.spage=39&rft.epage=54&rft.pages=39-54&rft.issn=1536-8378&rft.eissn=1536-8386&rft_id=info:doi/10.1081/JBC-200055058&rft_dat=%3Cinformahealthcare_cross%3E10_1081_JBC_200055058%3C/informahealthcare_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |