Selective DNA Release from DQAsome/DNA Complexes at Mitochondria-Like Membranes

The number of diseases found to be associated with defects of the mitochondrial genome has grown significantly over the past decade (Wallace 1999). Despite major advances in understanding mtDNA defects at the genetic and biochemical level, there is no satisfactory treatment available for the vast ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug delivery 2000-01, Vol.7 (1), p.1-5
1. Verfasser: Volkmar Weissig, Carmen Lizano, Vladimir P. Torchilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 1
container_start_page 1
container_title Drug delivery
container_volume 7
creator Volkmar Weissig, Carmen Lizano, Vladimir P. Torchilin
description The number of diseases found to be associated with defects of the mitochondrial genome has grown significantly over the past decade (Wallace 1999). Despite major advances in understanding mtDNA defects at the genetic and biochemical level, there is no satisfactory treatment available for the vast majority of patients and the exploration of gene therapeutic approaches is highly warranted. However, mitochondrial gene therapy still appears only theoretical and speculative. Any possibility for gene replacement depends on the use of a yet unavailable mitochondria-specific transfection vector. Mitochondria-specific vectors must posses two properties: they have to transport DNA to the side of mitochondria; they must not release DNA during endocytosis. Amphiphile compounds with delocalized cationic charge centers such as rhodamine 123 and the bola-amphiphile dequalinium have long been known to accumulate in mitochondria. Sufficient lipophilicity combined with delocalization of the positive charge to reduce the free energy change when moving from an aqueous to a hydrophobic environment are believed to be prerequisite for mitochondrial accumulation in response to the mitochondrial membrane potential. We have recently succeeded in preparing cationic vesicles made of dequalinium that we termed DQAsomes (Weissig et al. 1998a). We have shown that DQAsomes bind and protect DNA against DNase activity (Lasch et al. 1999). Based on the intrinsic property of dequalinium to preferentially accumulate in mitochondria in response to the electrochemical gradient at the mitochondrial membrane, we believe that DQAsomes can serve as a vector to deliver DNA to mitochondria in living cells. As a first step in the development of mitochondria-specific DNA delivery systems, we report here that DQAsome/DNA complexes selectively release DNA at cardiolipin-rich liposomes mimicking both the inner and the outer mitochondrial membrane. We demonstrate that DNA remains tightly associated with DQAsomes in the presence of an excess of anionic lipids other than cardiolipin.
doi_str_mv 10.1080/107175400266722
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_informahealthcare_journals_10_1080_107175400266722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17853075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-4a6c0c9f57e0f1c8cbd72a4cc4c9f3e25cad0b8d8dd831ba728155ce298efd4d3</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EgvKY2VAmtlDbsWOHrWp5SS2I12w59o2aktTFToH-e1yVAZAQ05Wvz_fp6iB0TPAZwRL3CRZEcIYxzXNB6RbqkSzPU15QuY16GLMilZSzPbQfwgxjnBNKd9FezBackayH7h6hAdPVb5CMbgfJQ3zpAEnlXZuM7gfBtdBffwxdu2jgA0Kiu2RSd85M3dz6Wqfj-gWSCbSl13MIh2in0k2Ao695gJ4vL56G1-n47upmOBinhhWkS5nODTZFxQXgihhpSiuoZsawuMyAcqMtLqWV1sqMlFpQSTg3QAsJlWU2O0Cnm96Fd69LCJ1q62CgaeIRbhmUIDRKYMW_IBGSZ1jwCPY3oPEuBA-VWvi61X6lCFZr2eqX7Jg4-apeli3Yb_zGbgTON0A9r5xv9bvzjVWdXjXOV1GXqYPK_m4vfoSnoJtuarQHNXNLP492_7zsE1KQnYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17853075</pqid></control><display><type>article</type><title>Selective DNA Release from DQAsome/DNA Complexes at Mitochondria-Like Membranes</title><source>MEDLINE</source><source>Taylor &amp; Francis Medical Library - CRKN</source><source>Access via Taylor &amp; Francis</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Volkmar Weissig, Carmen Lizano, Vladimir P. Torchilin</creator><creatorcontrib>Volkmar Weissig, Carmen Lizano, Vladimir P. Torchilin</creatorcontrib><description>The number of diseases found to be associated with defects of the mitochondrial genome has grown significantly over the past decade (Wallace 1999). Despite major advances in understanding mtDNA defects at the genetic and biochemical level, there is no satisfactory treatment available for the vast majority of patients and the exploration of gene therapeutic approaches is highly warranted. However, mitochondrial gene therapy still appears only theoretical and speculative. Any possibility for gene replacement depends on the use of a yet unavailable mitochondria-specific transfection vector. Mitochondria-specific vectors must posses two properties: they have to transport DNA to the side of mitochondria; they must not release DNA during endocytosis. Amphiphile compounds with delocalized cationic charge centers such as rhodamine 123 and the bola-amphiphile dequalinium have long been known to accumulate in mitochondria. Sufficient lipophilicity combined with delocalization of the positive charge to reduce the free energy change when moving from an aqueous to a hydrophobic environment are believed to be prerequisite for mitochondrial accumulation in response to the mitochondrial membrane potential. We have recently succeeded in preparing cationic vesicles made of dequalinium that we termed DQAsomes (Weissig et al. 1998a). We have shown that DQAsomes bind and protect DNA against DNase activity (Lasch et al. 1999). Based on the intrinsic property of dequalinium to preferentially accumulate in mitochondria in response to the electrochemical gradient at the mitochondrial membrane, we believe that DQAsomes can serve as a vector to deliver DNA to mitochondria in living cells. As a first step in the development of mitochondria-specific DNA delivery systems, we report here that DQAsome/DNA complexes selectively release DNA at cardiolipin-rich liposomes mimicking both the inner and the outer mitochondrial membrane. We demonstrate that DNA remains tightly associated with DQAsomes in the presence of an excess of anionic lipids other than cardiolipin.</description><identifier>ISSN: 0049-8254</identifier><identifier>ISSN: 1071-7544</identifier><identifier>EISSN: 1366-5928</identifier><identifier>EISSN: 1521-0464</identifier><identifier>DOI: 10.1080/107175400266722</identifier><identifier>PMID: 10895413</identifier><language>eng</language><publisher>England: Informa UK Ltd</publisher><subject>Cardiolipins - chemistry ; Dequalinium - chemistry ; DNA, Mitochondrial - administration &amp; dosage ; DNA, Mitochondrial - genetics ; Drug Carriers ; Excipients ; Liposomes ; Membranes, Artificial ; Mitochondria - metabolism ; Particle Size</subject><ispartof>Drug delivery, 2000-01, Vol.7 (1), p.1-5</ispartof><rights>2000 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-4a6c0c9f57e0f1c8cbd72a4cc4c9f3e25cad0b8d8dd831ba728155ce298efd4d3</citedby><cites>FETCH-LOGICAL-c491t-4a6c0c9f57e0f1c8cbd72a4cc4c9f3e25cad0b8d8dd831ba728155ce298efd4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/107175400266722$$EPDF$$P50$$Ginformahealthcare$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/107175400266722$$EHTML$$P50$$Ginformahealthcare$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436,61221,61256,61402,61437</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10895413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Volkmar Weissig, Carmen Lizano, Vladimir P. Torchilin</creatorcontrib><title>Selective DNA Release from DQAsome/DNA Complexes at Mitochondria-Like Membranes</title><title>Drug delivery</title><addtitle>Drug Deliv</addtitle><description>The number of diseases found to be associated with defects of the mitochondrial genome has grown significantly over the past decade (Wallace 1999). Despite major advances in understanding mtDNA defects at the genetic and biochemical level, there is no satisfactory treatment available for the vast majority of patients and the exploration of gene therapeutic approaches is highly warranted. However, mitochondrial gene therapy still appears only theoretical and speculative. Any possibility for gene replacement depends on the use of a yet unavailable mitochondria-specific transfection vector. Mitochondria-specific vectors must posses two properties: they have to transport DNA to the side of mitochondria; they must not release DNA during endocytosis. Amphiphile compounds with delocalized cationic charge centers such as rhodamine 123 and the bola-amphiphile dequalinium have long been known to accumulate in mitochondria. Sufficient lipophilicity combined with delocalization of the positive charge to reduce the free energy change when moving from an aqueous to a hydrophobic environment are believed to be prerequisite for mitochondrial accumulation in response to the mitochondrial membrane potential. We have recently succeeded in preparing cationic vesicles made of dequalinium that we termed DQAsomes (Weissig et al. 1998a). We have shown that DQAsomes bind and protect DNA against DNase activity (Lasch et al. 1999). Based on the intrinsic property of dequalinium to preferentially accumulate in mitochondria in response to the electrochemical gradient at the mitochondrial membrane, we believe that DQAsomes can serve as a vector to deliver DNA to mitochondria in living cells. As a first step in the development of mitochondria-specific DNA delivery systems, we report here that DQAsome/DNA complexes selectively release DNA at cardiolipin-rich liposomes mimicking both the inner and the outer mitochondrial membrane. We demonstrate that DNA remains tightly associated with DQAsomes in the presence of an excess of anionic lipids other than cardiolipin.</description><subject>Cardiolipins - chemistry</subject><subject>Dequalinium - chemistry</subject><subject>DNA, Mitochondrial - administration &amp; dosage</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Drug Carriers</subject><subject>Excipients</subject><subject>Liposomes</subject><subject>Membranes, Artificial</subject><subject>Mitochondria - metabolism</subject><subject>Particle Size</subject><issn>0049-8254</issn><issn>1071-7544</issn><issn>1366-5928</issn><issn>1521-0464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtPwzAURi0EgvKY2VAmtlDbsWOHrWp5SS2I12w59o2aktTFToH-e1yVAZAQ05Wvz_fp6iB0TPAZwRL3CRZEcIYxzXNB6RbqkSzPU15QuY16GLMilZSzPbQfwgxjnBNKd9FezBackayH7h6hAdPVb5CMbgfJQ3zpAEnlXZuM7gfBtdBffwxdu2jgA0Kiu2RSd85M3dz6Wqfj-gWSCbSl13MIh2in0k2Ao695gJ4vL56G1-n47upmOBinhhWkS5nODTZFxQXgihhpSiuoZsawuMyAcqMtLqWV1sqMlFpQSTg3QAsJlWU2O0Cnm96Fd69LCJ1q62CgaeIRbhmUIDRKYMW_IBGSZ1jwCPY3oPEuBA-VWvi61X6lCFZr2eqX7Jg4-apeli3Yb_zGbgTON0A9r5xv9bvzjVWdXjXOV1GXqYPK_m4vfoSnoJtuarQHNXNLP492_7zsE1KQnYA</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Volkmar Weissig, Carmen Lizano, Vladimir P. Torchilin</creator><general>Informa UK Ltd</general><general>Taylor &amp; Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20000101</creationdate><title>Selective DNA Release from DQAsome/DNA Complexes at Mitochondria-Like Membranes</title><author>Volkmar Weissig, Carmen Lizano, Vladimir P. Torchilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-4a6c0c9f57e0f1c8cbd72a4cc4c9f3e25cad0b8d8dd831ba728155ce298efd4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Cardiolipins - chemistry</topic><topic>Dequalinium - chemistry</topic><topic>DNA, Mitochondrial - administration &amp; dosage</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Drug Carriers</topic><topic>Excipients</topic><topic>Liposomes</topic><topic>Membranes, Artificial</topic><topic>Mitochondria - metabolism</topic><topic>Particle Size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volkmar Weissig, Carmen Lizano, Vladimir P. Torchilin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Drug delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volkmar Weissig, Carmen Lizano, Vladimir P. Torchilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective DNA Release from DQAsome/DNA Complexes at Mitochondria-Like Membranes</atitle><jtitle>Drug delivery</jtitle><addtitle>Drug Deliv</addtitle><date>2000-01-01</date><risdate>2000</risdate><volume>7</volume><issue>1</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0049-8254</issn><issn>1071-7544</issn><eissn>1366-5928</eissn><eissn>1521-0464</eissn><abstract>The number of diseases found to be associated with defects of the mitochondrial genome has grown significantly over the past decade (Wallace 1999). Despite major advances in understanding mtDNA defects at the genetic and biochemical level, there is no satisfactory treatment available for the vast majority of patients and the exploration of gene therapeutic approaches is highly warranted. However, mitochondrial gene therapy still appears only theoretical and speculative. Any possibility for gene replacement depends on the use of a yet unavailable mitochondria-specific transfection vector. Mitochondria-specific vectors must posses two properties: they have to transport DNA to the side of mitochondria; they must not release DNA during endocytosis. Amphiphile compounds with delocalized cationic charge centers such as rhodamine 123 and the bola-amphiphile dequalinium have long been known to accumulate in mitochondria. Sufficient lipophilicity combined with delocalization of the positive charge to reduce the free energy change when moving from an aqueous to a hydrophobic environment are believed to be prerequisite for mitochondrial accumulation in response to the mitochondrial membrane potential. We have recently succeeded in preparing cationic vesicles made of dequalinium that we termed DQAsomes (Weissig et al. 1998a). We have shown that DQAsomes bind and protect DNA against DNase activity (Lasch et al. 1999). Based on the intrinsic property of dequalinium to preferentially accumulate in mitochondria in response to the electrochemical gradient at the mitochondrial membrane, we believe that DQAsomes can serve as a vector to deliver DNA to mitochondria in living cells. As a first step in the development of mitochondria-specific DNA delivery systems, we report here that DQAsome/DNA complexes selectively release DNA at cardiolipin-rich liposomes mimicking both the inner and the outer mitochondrial membrane. We demonstrate that DNA remains tightly associated with DQAsomes in the presence of an excess of anionic lipids other than cardiolipin.</abstract><cop>England</cop><pub>Informa UK Ltd</pub><pmid>10895413</pmid><doi>10.1080/107175400266722</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0049-8254
ispartof Drug delivery, 2000-01, Vol.7 (1), p.1-5
issn 0049-8254
1071-7544
1366-5928
1521-0464
language eng
recordid cdi_informahealthcare_journals_10_1080_107175400266722
source MEDLINE; Taylor & Francis Medical Library - CRKN; Access via Taylor & Francis; EZB-FREE-00999 freely available EZB journals
subjects Cardiolipins - chemistry
Dequalinium - chemistry
DNA, Mitochondrial - administration & dosage
DNA, Mitochondrial - genetics
Drug Carriers
Excipients
Liposomes
Membranes, Artificial
Mitochondria - metabolism
Particle Size
title Selective DNA Release from DQAsome/DNA Complexes at Mitochondria-Like Membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20DNA%20Release%20from%20DQAsome/DNA%20Complexes%20at%20Mitochondria-Like%20Membranes&rft.jtitle=Drug%20delivery&rft.au=Volkmar%20Weissig,%20Carmen%20Lizano,%20Vladimir%20P.%20Torchilin&rft.date=2000-01-01&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0049-8254&rft.eissn=1366-5928&rft_id=info:doi/10.1080/107175400266722&rft_dat=%3Cproquest_infor%3E17853075%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17853075&rft_id=info:pmid/10895413&rfr_iscdi=true