Sulphation of resveratrol, a natural compound present in wine, and its inhibition by natural flavonoids
1. Resveratrol, a polyphenolic compound present in grape and wine, has beneficial effects against cancer and protective effects on the cardiovascular system. Resveratrol is sulphated, and the hepatic and duodenal sulphation might limit the bioavailability of this compound. The aim of this study was...
Gespeichert in:
Veröffentlicht in: | Xenobiotica 2000-09, Vol.30 (9), p.857-866 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 866 |
---|---|
container_issue | 9 |
container_start_page | 857 |
container_title | Xenobiotica |
container_volume | 30 |
creator | De Santi, C. Pietrabissa, A. Spisni, R. Mosca, F. Pacifici, G. M. |
description | 1. Resveratrol, a polyphenolic compound present in grape and wine, has beneficial effects against cancer and protective effects on the cardiovascular system. Resveratrol is sulphated, and the hepatic and duodenal sulphation might limit the bioavailability of this
compound. The aim of this study was to see whether natural flavonoids present in wine, fruits and vegetables inhibit the sulphation of resveratrol in the human liver and duodenum. 2. In the liver, IC50 for the inhibition of resveratrol sulphation was 12 ± 2 pM (quercetin), 1.0 ± 0.04 μM (fisetin), 1.4 ± 0.1 μM (myricetin), 2.2 ± 0.1 μM (kaempferol) and 2.8 ± 0.2 μM (apigenin). Similarly, in the duodenum, IC50 was 15 ± 2 pM (quercetin), 1.3 ± 0.1 μM (apigenin), 1.3 ± 0.5 μM (fisetin), 2.3 ± 0.1 μM (kaempferol) and 2.5 ± 0.3 μM (myricetin). 3. The type of inhibition of quercetin on resveratrol sulphation was studied in three
liver samples and was determined to be non-competitive and mixed in nature. Km (mean ± SD; μM) was 0.23 ± 0.07 (control), 0.40 ± 0.08 (5 pM quercetin) and 0.56 ± 0.09
(10 pM quercetin). Vmax (mean ± SD; pmol·min−1·mg−1) was 99 ± 11 (control), 73 ± 15 (5 pM quercetin) and 57 ± 10 (10 pM quercetin). K1 and K1es estimates (mean ± SD) were 3.7 ± 1.8 pM and 12.1 ± 1.7 pM respectively (p = 0.010). 4. Chrysin was a substrate for the sulphotransferase(s) and an assay was developed for measuring the chrysin sulphation rate in human liver. The enzyme followed Michaelis-Menten kinetics and Km and Vmax (mean ± SD) measured in four livers were 0.29 ± 0.07 μM and 43.1 ± 1.9 pmol·min−1·mg−1 respectively. 5. Catechin was neither an inhibitor of resveratrol sulphation nor a substrate of sulphotransferase. 6. These results are consistent with the view that many, but not all, flavonoids inhibit the hepatic and duodenal sulphation of resveratrol, and such inhibition might improve the bioavailability of this compound. |
doi_str_mv | 10.1080/004982500433282 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_informahealthcare_journals_10_1080_004982500433282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17730489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-a59d59da8055f48a3b5cf1a323f4beccceece8cb0ffd6e8dcc64b161d6e263643</originalsourceid><addsrcrecordid>eNqFkc1r3DAQxUVoSbZpz70VQyCnuNGXZTm3EJK2EOih7dmMZSmrIEuuJCfsf19td5vQQigIBs383uMxg9B7gj8SLPE5xryTtCmFMSrpAVoRJkTddFS-QqvttC5jfoTepHSPMRaE0kN0RAhuGir4Ct19W9y8hmyDr4Kpok4POkKOwZ1VUHnISwRXqTDNYfFjNRdA-1xZXz1arwtTmjan0ljbwf62GTZPOuPgIfhgx_QWvTbgkn63r8fox83196vP9e3XT1-uLm9rxRuWa2i6sTyQJZ_hEtjQKEOAUWb4oJVSWist1YCNGYWWo1KCD0SQ8qGCCc6O0enOd47h56JT7ieblHYOvA5L6lvKBG2k_C9I2pZhLrsCnu9AFUNKUZt-jnaCuOkJ7rdH6P85QlF82Fsvw6THZ36_9QKc7AFICpyJ4JVNT1zbsa7dJrzYUdabECd4DNGNfYaNC_GPhL2coftLvNbg8lpB1P19WKIvN3gx_y_407S8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17730489</pqid></control><display><type>article</type><title>Sulphation of resveratrol, a natural compound present in wine, and its inhibition by natural flavonoids</title><source>MEDLINE</source><source>Taylor & Francis Medical Library - CRKN</source><source>Taylor & Francis Journals Complete</source><creator>De Santi, C. ; Pietrabissa, A. ; Spisni, R. ; Mosca, F. ; Pacifici, G. M.</creator><creatorcontrib>De Santi, C. ; Pietrabissa, A. ; Spisni, R. ; Mosca, F. ; Pacifici, G. M.</creatorcontrib><description>1. Resveratrol, a polyphenolic compound present in grape and wine, has beneficial effects against cancer and protective effects on the cardiovascular system. Resveratrol is sulphated, and the hepatic and duodenal sulphation might limit the bioavailability of this
compound. The aim of this study was to see whether natural flavonoids present in wine, fruits and vegetables inhibit the sulphation of resveratrol in the human liver and duodenum. 2. In the liver, IC50 for the inhibition of resveratrol sulphation was 12 ± 2 pM (quercetin), 1.0 ± 0.04 μM (fisetin), 1.4 ± 0.1 μM (myricetin), 2.2 ± 0.1 μM (kaempferol) and 2.8 ± 0.2 μM (apigenin). Similarly, in the duodenum, IC50 was 15 ± 2 pM (quercetin), 1.3 ± 0.1 μM (apigenin), 1.3 ± 0.5 μM (fisetin), 2.3 ± 0.1 μM (kaempferol) and 2.5 ± 0.3 μM (myricetin). 3. The type of inhibition of quercetin on resveratrol sulphation was studied in three
liver samples and was determined to be non-competitive and mixed in nature. Km (mean ± SD; μM) was 0.23 ± 0.07 (control), 0.40 ± 0.08 (5 pM quercetin) and 0.56 ± 0.09
(10 pM quercetin). Vmax (mean ± SD; pmol·min−1·mg−1) was 99 ± 11 (control), 73 ± 15 (5 pM quercetin) and 57 ± 10 (10 pM quercetin). K1 and K1es estimates (mean ± SD) were 3.7 ± 1.8 pM and 12.1 ± 1.7 pM respectively (p = 0.010). 4. Chrysin was a substrate for the sulphotransferase(s) and an assay was developed for measuring the chrysin sulphation rate in human liver. The enzyme followed Michaelis-Menten kinetics and Km and Vmax (mean ± SD) measured in four livers were 0.29 ± 0.07 μM and 43.1 ± 1.9 pmol·min−1·mg−1 respectively. 5. Catechin was neither an inhibitor of resveratrol sulphation nor a substrate of sulphotransferase. 6. These results are consistent with the view that many, but not all, flavonoids inhibit the hepatic and duodenal sulphation of resveratrol, and such inhibition might improve the bioavailability of this compound.</description><identifier>ISSN: 0049-8254</identifier><identifier>EISSN: 1366-5928</identifier><identifier>DOI: 10.1080/004982500433282</identifier><identifier>PMID: 11055264</identifier><identifier>CODEN: XENOBH</identifier><language>eng</language><publisher>London: Informa UK Ltd</publisher><subject>Aged ; Apigenin ; Biological and medical sciences ; Biological Availability ; Duodenum - metabolism ; Feeding. Feeding behavior ; Female ; Flavonoids - metabolism ; Flavonoids - pharmacology ; Fruit - chemistry ; Fundamental and applied biological sciences. Psychology ; General pharmacology ; Humans ; Kaempferols ; Kinetics ; Liver - metabolism ; Male ; Medical sciences ; Middle Aged ; Pharmacognosy. Homeopathy. Health food ; Pharmacology. Drug treatments ; phenolics ; Quercetin - analogs & derivatives ; Quercetin - pharmacology ; Resveratrol ; Stilbenes - antagonists & inhibitors ; Stilbenes - metabolism ; Substrate Specificity ; Sulfates - metabolism ; Sulfotransferases - metabolism ; Vegetables - chemistry ; Vertebrates: anatomy and physiology, studies on body, several organs or systems ; Wine - analysis</subject><ispartof>Xenobiotica, 2000-09, Vol.30 (9), p.857-866</ispartof><rights>2000 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted 2000</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-a59d59da8055f48a3b5cf1a323f4beccceece8cb0ffd6e8dcc64b161d6e263643</citedby><cites>FETCH-LOGICAL-c453t-a59d59da8055f48a3b5cf1a323f4beccceece8cb0ffd6e8dcc64b161d6e263643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/004982500433282$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/004982500433282$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,59753,60436,60542,61221,61256,61402,61437</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=793978$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11055264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De Santi, C.</creatorcontrib><creatorcontrib>Pietrabissa, A.</creatorcontrib><creatorcontrib>Spisni, R.</creatorcontrib><creatorcontrib>Mosca, F.</creatorcontrib><creatorcontrib>Pacifici, G. M.</creatorcontrib><title>Sulphation of resveratrol, a natural compound present in wine, and its inhibition by natural flavonoids</title><title>Xenobiotica</title><addtitle>Xenobiotica</addtitle><description>1. Resveratrol, a polyphenolic compound present in grape and wine, has beneficial effects against cancer and protective effects on the cardiovascular system. Resveratrol is sulphated, and the hepatic and duodenal sulphation might limit the bioavailability of this
compound. The aim of this study was to see whether natural flavonoids present in wine, fruits and vegetables inhibit the sulphation of resveratrol in the human liver and duodenum. 2. In the liver, IC50 for the inhibition of resveratrol sulphation was 12 ± 2 pM (quercetin), 1.0 ± 0.04 μM (fisetin), 1.4 ± 0.1 μM (myricetin), 2.2 ± 0.1 μM (kaempferol) and 2.8 ± 0.2 μM (apigenin). Similarly, in the duodenum, IC50 was 15 ± 2 pM (quercetin), 1.3 ± 0.1 μM (apigenin), 1.3 ± 0.5 μM (fisetin), 2.3 ± 0.1 μM (kaempferol) and 2.5 ± 0.3 μM (myricetin). 3. The type of inhibition of quercetin on resveratrol sulphation was studied in three
liver samples and was determined to be non-competitive and mixed in nature. Km (mean ± SD; μM) was 0.23 ± 0.07 (control), 0.40 ± 0.08 (5 pM quercetin) and 0.56 ± 0.09
(10 pM quercetin). Vmax (mean ± SD; pmol·min−1·mg−1) was 99 ± 11 (control), 73 ± 15 (5 pM quercetin) and 57 ± 10 (10 pM quercetin). K1 and K1es estimates (mean ± SD) were 3.7 ± 1.8 pM and 12.1 ± 1.7 pM respectively (p = 0.010). 4. Chrysin was a substrate for the sulphotransferase(s) and an assay was developed for measuring the chrysin sulphation rate in human liver. The enzyme followed Michaelis-Menten kinetics and Km and Vmax (mean ± SD) measured in four livers were 0.29 ± 0.07 μM and 43.1 ± 1.9 pmol·min−1·mg−1 respectively. 5. Catechin was neither an inhibitor of resveratrol sulphation nor a substrate of sulphotransferase. 6. These results are consistent with the view that many, but not all, flavonoids inhibit the hepatic and duodenal sulphation of resveratrol, and such inhibition might improve the bioavailability of this compound.</description><subject>Aged</subject><subject>Apigenin</subject><subject>Biological and medical sciences</subject><subject>Biological Availability</subject><subject>Duodenum - metabolism</subject><subject>Feeding. Feeding behavior</subject><subject>Female</subject><subject>Flavonoids - metabolism</subject><subject>Flavonoids - pharmacology</subject><subject>Fruit - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General pharmacology</subject><subject>Humans</subject><subject>Kaempferols</subject><subject>Kinetics</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Pharmacognosy. Homeopathy. Health food</subject><subject>Pharmacology. Drug treatments</subject><subject>phenolics</subject><subject>Quercetin - analogs & derivatives</subject><subject>Quercetin - pharmacology</subject><subject>Resveratrol</subject><subject>Stilbenes - antagonists & inhibitors</subject><subject>Stilbenes - metabolism</subject><subject>Substrate Specificity</subject><subject>Sulfates - metabolism</subject><subject>Sulfotransferases - metabolism</subject><subject>Vegetables - chemistry</subject><subject>Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><subject>Wine - analysis</subject><issn>0049-8254</issn><issn>1366-5928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1r3DAQxUVoSbZpz70VQyCnuNGXZTm3EJK2EOih7dmMZSmrIEuuJCfsf19td5vQQigIBs383uMxg9B7gj8SLPE5xryTtCmFMSrpAVoRJkTddFS-QqvttC5jfoTepHSPMRaE0kN0RAhuGir4Ct19W9y8hmyDr4Kpok4POkKOwZ1VUHnISwRXqTDNYfFjNRdA-1xZXz1arwtTmjan0ljbwf62GTZPOuPgIfhgx_QWvTbgkn63r8fox83196vP9e3XT1-uLm9rxRuWa2i6sTyQJZ_hEtjQKEOAUWb4oJVSWist1YCNGYWWo1KCD0SQ8qGCCc6O0enOd47h56JT7ieblHYOvA5L6lvKBG2k_C9I2pZhLrsCnu9AFUNKUZt-jnaCuOkJ7rdH6P85QlF82Fsvw6THZ36_9QKc7AFICpyJ4JVNT1zbsa7dJrzYUdabECd4DNGNfYaNC_GPhL2coftLvNbg8lpB1P19WKIvN3gx_y_407S8</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>De Santi, C.</creator><creator>Pietrabissa, A.</creator><creator>Spisni, R.</creator><creator>Mosca, F.</creator><creator>Pacifici, G. M.</creator><general>Informa UK Ltd</general><general>Taylor & Francis</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20000901</creationdate><title>Sulphation of resveratrol, a natural compound present in wine, and its inhibition by natural flavonoids</title><author>De Santi, C. ; Pietrabissa, A. ; Spisni, R. ; Mosca, F. ; Pacifici, G. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-a59d59da8055f48a3b5cf1a323f4beccceece8cb0ffd6e8dcc64b161d6e263643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Aged</topic><topic>Apigenin</topic><topic>Biological and medical sciences</topic><topic>Biological Availability</topic><topic>Duodenum - metabolism</topic><topic>Feeding. Feeding behavior</topic><topic>Female</topic><topic>Flavonoids - metabolism</topic><topic>Flavonoids - pharmacology</topic><topic>Fruit - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General pharmacology</topic><topic>Humans</topic><topic>Kaempferols</topic><topic>Kinetics</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Pharmacognosy. Homeopathy. Health food</topic><topic>Pharmacology. Drug treatments</topic><topic>phenolics</topic><topic>Quercetin - analogs & derivatives</topic><topic>Quercetin - pharmacology</topic><topic>Resveratrol</topic><topic>Stilbenes - antagonists & inhibitors</topic><topic>Stilbenes - metabolism</topic><topic>Substrate Specificity</topic><topic>Sulfates - metabolism</topic><topic>Sulfotransferases - metabolism</topic><topic>Vegetables - chemistry</topic><topic>Vertebrates: anatomy and physiology, studies on body, several organs or systems</topic><topic>Wine - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Santi, C.</creatorcontrib><creatorcontrib>Pietrabissa, A.</creatorcontrib><creatorcontrib>Spisni, R.</creatorcontrib><creatorcontrib>Mosca, F.</creatorcontrib><creatorcontrib>Pacifici, G. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Xenobiotica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Santi, C.</au><au>Pietrabissa, A.</au><au>Spisni, R.</au><au>Mosca, F.</au><au>Pacifici, G. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulphation of resveratrol, a natural compound present in wine, and its inhibition by natural flavonoids</atitle><jtitle>Xenobiotica</jtitle><addtitle>Xenobiotica</addtitle><date>2000-09-01</date><risdate>2000</risdate><volume>30</volume><issue>9</issue><spage>857</spage><epage>866</epage><pages>857-866</pages><issn>0049-8254</issn><eissn>1366-5928</eissn><coden>XENOBH</coden><abstract>1. Resveratrol, a polyphenolic compound present in grape and wine, has beneficial effects against cancer and protective effects on the cardiovascular system. Resveratrol is sulphated, and the hepatic and duodenal sulphation might limit the bioavailability of this
compound. The aim of this study was to see whether natural flavonoids present in wine, fruits and vegetables inhibit the sulphation of resveratrol in the human liver and duodenum. 2. In the liver, IC50 for the inhibition of resveratrol sulphation was 12 ± 2 pM (quercetin), 1.0 ± 0.04 μM (fisetin), 1.4 ± 0.1 μM (myricetin), 2.2 ± 0.1 μM (kaempferol) and 2.8 ± 0.2 μM (apigenin). Similarly, in the duodenum, IC50 was 15 ± 2 pM (quercetin), 1.3 ± 0.1 μM (apigenin), 1.3 ± 0.5 μM (fisetin), 2.3 ± 0.1 μM (kaempferol) and 2.5 ± 0.3 μM (myricetin). 3. The type of inhibition of quercetin on resveratrol sulphation was studied in three
liver samples and was determined to be non-competitive and mixed in nature. Km (mean ± SD; μM) was 0.23 ± 0.07 (control), 0.40 ± 0.08 (5 pM quercetin) and 0.56 ± 0.09
(10 pM quercetin). Vmax (mean ± SD; pmol·min−1·mg−1) was 99 ± 11 (control), 73 ± 15 (5 pM quercetin) and 57 ± 10 (10 pM quercetin). K1 and K1es estimates (mean ± SD) were 3.7 ± 1.8 pM and 12.1 ± 1.7 pM respectively (p = 0.010). 4. Chrysin was a substrate for the sulphotransferase(s) and an assay was developed for measuring the chrysin sulphation rate in human liver. The enzyme followed Michaelis-Menten kinetics and Km and Vmax (mean ± SD) measured in four livers were 0.29 ± 0.07 μM and 43.1 ± 1.9 pmol·min−1·mg−1 respectively. 5. Catechin was neither an inhibitor of resveratrol sulphation nor a substrate of sulphotransferase. 6. These results are consistent with the view that many, but not all, flavonoids inhibit the hepatic and duodenal sulphation of resveratrol, and such inhibition might improve the bioavailability of this compound.</abstract><cop>London</cop><pub>Informa UK Ltd</pub><pmid>11055264</pmid><doi>10.1080/004982500433282</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0049-8254 |
ispartof | Xenobiotica, 2000-09, Vol.30 (9), p.857-866 |
issn | 0049-8254 1366-5928 |
language | eng |
recordid | cdi_informahealthcare_journals_10_1080_004982500433282 |
source | MEDLINE; Taylor & Francis Medical Library - CRKN; Taylor & Francis Journals Complete |
subjects | Aged Apigenin Biological and medical sciences Biological Availability Duodenum - metabolism Feeding. Feeding behavior Female Flavonoids - metabolism Flavonoids - pharmacology Fruit - chemistry Fundamental and applied biological sciences. Psychology General pharmacology Humans Kaempferols Kinetics Liver - metabolism Male Medical sciences Middle Aged Pharmacognosy. Homeopathy. Health food Pharmacology. Drug treatments phenolics Quercetin - analogs & derivatives Quercetin - pharmacology Resveratrol Stilbenes - antagonists & inhibitors Stilbenes - metabolism Substrate Specificity Sulfates - metabolism Sulfotransferases - metabolism Vegetables - chemistry Vertebrates: anatomy and physiology, studies on body, several organs or systems Wine - analysis |
title | Sulphation of resveratrol, a natural compound present in wine, and its inhibition by natural flavonoids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulphation%20of%20resveratrol,%20a%20natural%20compound%20present%20in%20wine,%20and%20its%20inhibition%20by%20natural%20flavonoids&rft.jtitle=Xenobiotica&rft.au=De%20Santi,%20C.&rft.date=2000-09-01&rft.volume=30&rft.issue=9&rft.spage=857&rft.epage=866&rft.pages=857-866&rft.issn=0049-8254&rft.eissn=1366-5928&rft.coden=XENOBH&rft_id=info:doi/10.1080/004982500433282&rft_dat=%3Cproquest_infor%3E17730489%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17730489&rft_id=info:pmid/11055264&rfr_iscdi=true |