Sulphation of resveratrol, a natural compound present in wine, and its inhibition by natural flavonoids

1. Resveratrol, a polyphenolic compound present in grape and wine, has beneficial effects against cancer and protective effects on the cardiovascular system. Resveratrol is sulphated, and the hepatic and duodenal sulphation might limit the bioavailability of this compound. The aim of this study was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Xenobiotica 2000-09, Vol.30 (9), p.857-866
Hauptverfasser: De Santi, C., Pietrabissa, A., Spisni, R., Mosca, F., Pacifici, G. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 866
container_issue 9
container_start_page 857
container_title Xenobiotica
container_volume 30
creator De Santi, C.
Pietrabissa, A.
Spisni, R.
Mosca, F.
Pacifici, G. M.
description 1. Resveratrol, a polyphenolic compound present in grape and wine, has beneficial effects against cancer and protective effects on the cardiovascular system. Resveratrol is sulphated, and the hepatic and duodenal sulphation might limit the bioavailability of this compound. The aim of this study was to see whether natural flavonoids present in wine, fruits and vegetables inhibit the sulphation of resveratrol in the human liver and duodenum. 2. In the liver, IC50 for the inhibition of resveratrol sulphation was 12 ± 2 pM (quercetin), 1.0 ± 0.04 μM (fisetin), 1.4 ± 0.1 μM (myricetin), 2.2 ± 0.1 μM (kaempferol) and 2.8 ± 0.2 μM (apigenin). Similarly, in the duodenum, IC50 was 15 ± 2 pM (quercetin), 1.3 ± 0.1 μM (apigenin), 1.3 ± 0.5 μM (fisetin), 2.3 ± 0.1 μM (kaempferol) and 2.5 ± 0.3 μM (myricetin). 3. The type of inhibition of quercetin on resveratrol sulphation was studied in three liver samples and was determined to be non-competitive and mixed in nature. Km (mean ± SD; μM) was 0.23 ± 0.07 (control), 0.40 ± 0.08 (5 pM quercetin) and 0.56 ± 0.09 (10 pM quercetin). Vmax (mean ± SD; pmol·min−1·mg−1) was 99 ± 11 (control), 73 ± 15 (5 pM quercetin) and 57 ± 10 (10 pM quercetin). K1 and K1es estimates (mean ± SD) were 3.7 ± 1.8 pM and 12.1 ± 1.7 pM respectively (p = 0.010). 4. Chrysin was a substrate for the sulphotransferase(s) and an assay was developed for measuring the chrysin sulphation rate in human liver. The enzyme followed Michaelis-Menten kinetics and Km and Vmax (mean ± SD) measured in four livers were 0.29 ± 0.07 μM and 43.1 ± 1.9 pmol·min−1·mg−1 respectively. 5. Catechin was neither an inhibitor of resveratrol sulphation nor a substrate of sulphotransferase. 6. These results are consistent with the view that many, but not all, flavonoids inhibit the hepatic and duodenal sulphation of resveratrol, and such inhibition might improve the bioavailability of this compound.
doi_str_mv 10.1080/004982500433282
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_informahealthcare_journals_10_1080_004982500433282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17730489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-a59d59da8055f48a3b5cf1a323f4beccceece8cb0ffd6e8dcc64b161d6e263643</originalsourceid><addsrcrecordid>eNqFkc1r3DAQxUVoSbZpz70VQyCnuNGXZTm3EJK2EOih7dmMZSmrIEuuJCfsf19td5vQQigIBs383uMxg9B7gj8SLPE5xryTtCmFMSrpAVoRJkTddFS-QqvttC5jfoTepHSPMRaE0kN0RAhuGir4Ct19W9y8hmyDr4Kpok4POkKOwZ1VUHnISwRXqTDNYfFjNRdA-1xZXz1arwtTmjan0ljbwf62GTZPOuPgIfhgx_QWvTbgkn63r8fox83196vP9e3XT1-uLm9rxRuWa2i6sTyQJZ_hEtjQKEOAUWb4oJVSWist1YCNGYWWo1KCD0SQ8qGCCc6O0enOd47h56JT7ieblHYOvA5L6lvKBG2k_C9I2pZhLrsCnu9AFUNKUZt-jnaCuOkJ7rdH6P85QlF82Fsvw6THZ36_9QKc7AFICpyJ4JVNT1zbsa7dJrzYUdabECd4DNGNfYaNC_GPhL2coftLvNbg8lpB1P19WKIvN3gx_y_407S8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17730489</pqid></control><display><type>article</type><title>Sulphation of resveratrol, a natural compound present in wine, and its inhibition by natural flavonoids</title><source>MEDLINE</source><source>Taylor &amp; Francis Medical Library - CRKN</source><source>Taylor &amp; Francis Journals Complete</source><creator>De Santi, C. ; Pietrabissa, A. ; Spisni, R. ; Mosca, F. ; Pacifici, G. M.</creator><creatorcontrib>De Santi, C. ; Pietrabissa, A. ; Spisni, R. ; Mosca, F. ; Pacifici, G. M.</creatorcontrib><description>1. Resveratrol, a polyphenolic compound present in grape and wine, has beneficial effects against cancer and protective effects on the cardiovascular system. Resveratrol is sulphated, and the hepatic and duodenal sulphation might limit the bioavailability of this compound. The aim of this study was to see whether natural flavonoids present in wine, fruits and vegetables inhibit the sulphation of resveratrol in the human liver and duodenum. 2. In the liver, IC50 for the inhibition of resveratrol sulphation was 12 ± 2 pM (quercetin), 1.0 ± 0.04 μM (fisetin), 1.4 ± 0.1 μM (myricetin), 2.2 ± 0.1 μM (kaempferol) and 2.8 ± 0.2 μM (apigenin). Similarly, in the duodenum, IC50 was 15 ± 2 pM (quercetin), 1.3 ± 0.1 μM (apigenin), 1.3 ± 0.5 μM (fisetin), 2.3 ± 0.1 μM (kaempferol) and 2.5 ± 0.3 μM (myricetin). 3. The type of inhibition of quercetin on resveratrol sulphation was studied in three liver samples and was determined to be non-competitive and mixed in nature. Km (mean ± SD; μM) was 0.23 ± 0.07 (control), 0.40 ± 0.08 (5 pM quercetin) and 0.56 ± 0.09 (10 pM quercetin). Vmax (mean ± SD; pmol·min−1·mg−1) was 99 ± 11 (control), 73 ± 15 (5 pM quercetin) and 57 ± 10 (10 pM quercetin). K1 and K1es estimates (mean ± SD) were 3.7 ± 1.8 pM and 12.1 ± 1.7 pM respectively (p = 0.010). 4. Chrysin was a substrate for the sulphotransferase(s) and an assay was developed for measuring the chrysin sulphation rate in human liver. The enzyme followed Michaelis-Menten kinetics and Km and Vmax (mean ± SD) measured in four livers were 0.29 ± 0.07 μM and 43.1 ± 1.9 pmol·min−1·mg−1 respectively. 5. Catechin was neither an inhibitor of resveratrol sulphation nor a substrate of sulphotransferase. 6. These results are consistent with the view that many, but not all, flavonoids inhibit the hepatic and duodenal sulphation of resveratrol, and such inhibition might improve the bioavailability of this compound.</description><identifier>ISSN: 0049-8254</identifier><identifier>EISSN: 1366-5928</identifier><identifier>DOI: 10.1080/004982500433282</identifier><identifier>PMID: 11055264</identifier><identifier>CODEN: XENOBH</identifier><language>eng</language><publisher>London: Informa UK Ltd</publisher><subject>Aged ; Apigenin ; Biological and medical sciences ; Biological Availability ; Duodenum - metabolism ; Feeding. Feeding behavior ; Female ; Flavonoids - metabolism ; Flavonoids - pharmacology ; Fruit - chemistry ; Fundamental and applied biological sciences. Psychology ; General pharmacology ; Humans ; Kaempferols ; Kinetics ; Liver - metabolism ; Male ; Medical sciences ; Middle Aged ; Pharmacognosy. Homeopathy. Health food ; Pharmacology. Drug treatments ; phenolics ; Quercetin - analogs &amp; derivatives ; Quercetin - pharmacology ; Resveratrol ; Stilbenes - antagonists &amp; inhibitors ; Stilbenes - metabolism ; Substrate Specificity ; Sulfates - metabolism ; Sulfotransferases - metabolism ; Vegetables - chemistry ; Vertebrates: anatomy and physiology, studies on body, several organs or systems ; Wine - analysis</subject><ispartof>Xenobiotica, 2000-09, Vol.30 (9), p.857-866</ispartof><rights>2000 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted 2000</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-a59d59da8055f48a3b5cf1a323f4beccceece8cb0ffd6e8dcc64b161d6e263643</citedby><cites>FETCH-LOGICAL-c453t-a59d59da8055f48a3b5cf1a323f4beccceece8cb0ffd6e8dcc64b161d6e263643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/004982500433282$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/004982500433282$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,59753,60436,60542,61221,61256,61402,61437</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=793978$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11055264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De Santi, C.</creatorcontrib><creatorcontrib>Pietrabissa, A.</creatorcontrib><creatorcontrib>Spisni, R.</creatorcontrib><creatorcontrib>Mosca, F.</creatorcontrib><creatorcontrib>Pacifici, G. M.</creatorcontrib><title>Sulphation of resveratrol, a natural compound present in wine, and its inhibition by natural flavonoids</title><title>Xenobiotica</title><addtitle>Xenobiotica</addtitle><description>1. Resveratrol, a polyphenolic compound present in grape and wine, has beneficial effects against cancer and protective effects on the cardiovascular system. Resveratrol is sulphated, and the hepatic and duodenal sulphation might limit the bioavailability of this compound. The aim of this study was to see whether natural flavonoids present in wine, fruits and vegetables inhibit the sulphation of resveratrol in the human liver and duodenum. 2. In the liver, IC50 for the inhibition of resveratrol sulphation was 12 ± 2 pM (quercetin), 1.0 ± 0.04 μM (fisetin), 1.4 ± 0.1 μM (myricetin), 2.2 ± 0.1 μM (kaempferol) and 2.8 ± 0.2 μM (apigenin). Similarly, in the duodenum, IC50 was 15 ± 2 pM (quercetin), 1.3 ± 0.1 μM (apigenin), 1.3 ± 0.5 μM (fisetin), 2.3 ± 0.1 μM (kaempferol) and 2.5 ± 0.3 μM (myricetin). 3. The type of inhibition of quercetin on resveratrol sulphation was studied in three liver samples and was determined to be non-competitive and mixed in nature. Km (mean ± SD; μM) was 0.23 ± 0.07 (control), 0.40 ± 0.08 (5 pM quercetin) and 0.56 ± 0.09 (10 pM quercetin). Vmax (mean ± SD; pmol·min−1·mg−1) was 99 ± 11 (control), 73 ± 15 (5 pM quercetin) and 57 ± 10 (10 pM quercetin). K1 and K1es estimates (mean ± SD) were 3.7 ± 1.8 pM and 12.1 ± 1.7 pM respectively (p = 0.010). 4. Chrysin was a substrate for the sulphotransferase(s) and an assay was developed for measuring the chrysin sulphation rate in human liver. The enzyme followed Michaelis-Menten kinetics and Km and Vmax (mean ± SD) measured in four livers were 0.29 ± 0.07 μM and 43.1 ± 1.9 pmol·min−1·mg−1 respectively. 5. Catechin was neither an inhibitor of resveratrol sulphation nor a substrate of sulphotransferase. 6. These results are consistent with the view that many, but not all, flavonoids inhibit the hepatic and duodenal sulphation of resveratrol, and such inhibition might improve the bioavailability of this compound.</description><subject>Aged</subject><subject>Apigenin</subject><subject>Biological and medical sciences</subject><subject>Biological Availability</subject><subject>Duodenum - metabolism</subject><subject>Feeding. Feeding behavior</subject><subject>Female</subject><subject>Flavonoids - metabolism</subject><subject>Flavonoids - pharmacology</subject><subject>Fruit - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General pharmacology</subject><subject>Humans</subject><subject>Kaempferols</subject><subject>Kinetics</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Pharmacognosy. Homeopathy. Health food</subject><subject>Pharmacology. Drug treatments</subject><subject>phenolics</subject><subject>Quercetin - analogs &amp; derivatives</subject><subject>Quercetin - pharmacology</subject><subject>Resveratrol</subject><subject>Stilbenes - antagonists &amp; inhibitors</subject><subject>Stilbenes - metabolism</subject><subject>Substrate Specificity</subject><subject>Sulfates - metabolism</subject><subject>Sulfotransferases - metabolism</subject><subject>Vegetables - chemistry</subject><subject>Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><subject>Wine - analysis</subject><issn>0049-8254</issn><issn>1366-5928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1r3DAQxUVoSbZpz70VQyCnuNGXZTm3EJK2EOih7dmMZSmrIEuuJCfsf19td5vQQigIBs383uMxg9B7gj8SLPE5xryTtCmFMSrpAVoRJkTddFS-QqvttC5jfoTepHSPMRaE0kN0RAhuGir4Ct19W9y8hmyDr4Kpok4POkKOwZ1VUHnISwRXqTDNYfFjNRdA-1xZXz1arwtTmjan0ljbwf62GTZPOuPgIfhgx_QWvTbgkn63r8fox83196vP9e3XT1-uLm9rxRuWa2i6sTyQJZ_hEtjQKEOAUWb4oJVSWist1YCNGYWWo1KCD0SQ8qGCCc6O0enOd47h56JT7ieblHYOvA5L6lvKBG2k_C9I2pZhLrsCnu9AFUNKUZt-jnaCuOkJ7rdH6P85QlF82Fsvw6THZ36_9QKc7AFICpyJ4JVNT1zbsa7dJrzYUdabECd4DNGNfYaNC_GPhL2coftLvNbg8lpB1P19WKIvN3gx_y_407S8</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>De Santi, C.</creator><creator>Pietrabissa, A.</creator><creator>Spisni, R.</creator><creator>Mosca, F.</creator><creator>Pacifici, G. M.</creator><general>Informa UK Ltd</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20000901</creationdate><title>Sulphation of resveratrol, a natural compound present in wine, and its inhibition by natural flavonoids</title><author>De Santi, C. ; Pietrabissa, A. ; Spisni, R. ; Mosca, F. ; Pacifici, G. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-a59d59da8055f48a3b5cf1a323f4beccceece8cb0ffd6e8dcc64b161d6e263643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Aged</topic><topic>Apigenin</topic><topic>Biological and medical sciences</topic><topic>Biological Availability</topic><topic>Duodenum - metabolism</topic><topic>Feeding. Feeding behavior</topic><topic>Female</topic><topic>Flavonoids - metabolism</topic><topic>Flavonoids - pharmacology</topic><topic>Fruit - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General pharmacology</topic><topic>Humans</topic><topic>Kaempferols</topic><topic>Kinetics</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Pharmacognosy. Homeopathy. Health food</topic><topic>Pharmacology. Drug treatments</topic><topic>phenolics</topic><topic>Quercetin - analogs &amp; derivatives</topic><topic>Quercetin - pharmacology</topic><topic>Resveratrol</topic><topic>Stilbenes - antagonists &amp; inhibitors</topic><topic>Stilbenes - metabolism</topic><topic>Substrate Specificity</topic><topic>Sulfates - metabolism</topic><topic>Sulfotransferases - metabolism</topic><topic>Vegetables - chemistry</topic><topic>Vertebrates: anatomy and physiology, studies on body, several organs or systems</topic><topic>Wine - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Santi, C.</creatorcontrib><creatorcontrib>Pietrabissa, A.</creatorcontrib><creatorcontrib>Spisni, R.</creatorcontrib><creatorcontrib>Mosca, F.</creatorcontrib><creatorcontrib>Pacifici, G. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Xenobiotica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Santi, C.</au><au>Pietrabissa, A.</au><au>Spisni, R.</au><au>Mosca, F.</au><au>Pacifici, G. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulphation of resveratrol, a natural compound present in wine, and its inhibition by natural flavonoids</atitle><jtitle>Xenobiotica</jtitle><addtitle>Xenobiotica</addtitle><date>2000-09-01</date><risdate>2000</risdate><volume>30</volume><issue>9</issue><spage>857</spage><epage>866</epage><pages>857-866</pages><issn>0049-8254</issn><eissn>1366-5928</eissn><coden>XENOBH</coden><abstract>1. Resveratrol, a polyphenolic compound present in grape and wine, has beneficial effects against cancer and protective effects on the cardiovascular system. Resveratrol is sulphated, and the hepatic and duodenal sulphation might limit the bioavailability of this compound. The aim of this study was to see whether natural flavonoids present in wine, fruits and vegetables inhibit the sulphation of resveratrol in the human liver and duodenum. 2. In the liver, IC50 for the inhibition of resveratrol sulphation was 12 ± 2 pM (quercetin), 1.0 ± 0.04 μM (fisetin), 1.4 ± 0.1 μM (myricetin), 2.2 ± 0.1 μM (kaempferol) and 2.8 ± 0.2 μM (apigenin). Similarly, in the duodenum, IC50 was 15 ± 2 pM (quercetin), 1.3 ± 0.1 μM (apigenin), 1.3 ± 0.5 μM (fisetin), 2.3 ± 0.1 μM (kaempferol) and 2.5 ± 0.3 μM (myricetin). 3. The type of inhibition of quercetin on resveratrol sulphation was studied in three liver samples and was determined to be non-competitive and mixed in nature. Km (mean ± SD; μM) was 0.23 ± 0.07 (control), 0.40 ± 0.08 (5 pM quercetin) and 0.56 ± 0.09 (10 pM quercetin). Vmax (mean ± SD; pmol·min−1·mg−1) was 99 ± 11 (control), 73 ± 15 (5 pM quercetin) and 57 ± 10 (10 pM quercetin). K1 and K1es estimates (mean ± SD) were 3.7 ± 1.8 pM and 12.1 ± 1.7 pM respectively (p = 0.010). 4. Chrysin was a substrate for the sulphotransferase(s) and an assay was developed for measuring the chrysin sulphation rate in human liver. The enzyme followed Michaelis-Menten kinetics and Km and Vmax (mean ± SD) measured in four livers were 0.29 ± 0.07 μM and 43.1 ± 1.9 pmol·min−1·mg−1 respectively. 5. Catechin was neither an inhibitor of resveratrol sulphation nor a substrate of sulphotransferase. 6. These results are consistent with the view that many, but not all, flavonoids inhibit the hepatic and duodenal sulphation of resveratrol, and such inhibition might improve the bioavailability of this compound.</abstract><cop>London</cop><pub>Informa UK Ltd</pub><pmid>11055264</pmid><doi>10.1080/004982500433282</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0049-8254
ispartof Xenobiotica, 2000-09, Vol.30 (9), p.857-866
issn 0049-8254
1366-5928
language eng
recordid cdi_informahealthcare_journals_10_1080_004982500433282
source MEDLINE; Taylor & Francis Medical Library - CRKN; Taylor & Francis Journals Complete
subjects Aged
Apigenin
Biological and medical sciences
Biological Availability
Duodenum - metabolism
Feeding. Feeding behavior
Female
Flavonoids - metabolism
Flavonoids - pharmacology
Fruit - chemistry
Fundamental and applied biological sciences. Psychology
General pharmacology
Humans
Kaempferols
Kinetics
Liver - metabolism
Male
Medical sciences
Middle Aged
Pharmacognosy. Homeopathy. Health food
Pharmacology. Drug treatments
phenolics
Quercetin - analogs & derivatives
Quercetin - pharmacology
Resveratrol
Stilbenes - antagonists & inhibitors
Stilbenes - metabolism
Substrate Specificity
Sulfates - metabolism
Sulfotransferases - metabolism
Vegetables - chemistry
Vertebrates: anatomy and physiology, studies on body, several organs or systems
Wine - analysis
title Sulphation of resveratrol, a natural compound present in wine, and its inhibition by natural flavonoids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulphation%20of%20resveratrol,%20a%20natural%20compound%20present%20in%20wine,%20and%20its%20inhibition%20by%20natural%20flavonoids&rft.jtitle=Xenobiotica&rft.au=De%20Santi,%20C.&rft.date=2000-09-01&rft.volume=30&rft.issue=9&rft.spage=857&rft.epage=866&rft.pages=857-866&rft.issn=0049-8254&rft.eissn=1366-5928&rft.coden=XENOBH&rft_id=info:doi/10.1080/004982500433282&rft_dat=%3Cproquest_infor%3E17730489%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17730489&rft_id=info:pmid/11055264&rfr_iscdi=true