Human body posture recognition algorithm for still images

Aiming at the low accuracy and poor robustness of the current algorithm based on manual features, this study proposed a posture recognition method combining joint point information with convolutional neural network. The deformable convolution is used in the proposed method to improve the stacked hou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering (Stevenage, England) England), 2020-07, Vol.2020 (13), p.322-325
Hauptverfasser: Yu, Naigong, Lv, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 325
container_issue 13
container_start_page 322
container_title Journal of engineering (Stevenage, England)
container_volume 2020
creator Yu, Naigong
Lv, Jian
description Aiming at the low accuracy and poor robustness of the current algorithm based on manual features, this study proposed a posture recognition method combining joint point information with convolutional neural network. The deformable convolution is used in the proposed method to improve the stacked hourglass model, so that it can extract the position of the human joint point accurately. At the same time, the convolutional neural network structure is designed to analyse the position information and confidence of the joint point autonomously, and extract the intrinsic link of the joint point of the human body. Finally, the softmax classifier is used to determine the pose category. Experimental verification has been carried out on the Willow data set. Moreover, the recognition accuracy demonstrates the effectiveness and superiority of the improved method.
doi_str_mv 10.1049/joe.2019.1146
format Article
fullrecord <record><control><sourceid>wiley_iet_j</sourceid><recordid>TN_cdi_iet_journals_10_1049_joe_2019_1146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>TJE2BF02985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2735-d33405a0aa20e0893ba382bb8c1cf9444594ce532e042a33ee9cffec5494f953</originalsourceid><addsrcrecordid>eNp9jz1PAkEQhjdGE4lS2m9jYXE4-4W3pRIQCQkN_WZvmcUlxy3ZPWL4994FCwq1mimeed95CHlgMGIg9fMu4ogD0yPG5PiKDDgoVggB6vpivyXDnHcAwITkINmA6Plxbxtaxc2JHmJujwlpQhe3TWhDbKittzGF9nNPfUw0t6GuadjbLeZ7cuNtnXH4M-_IejZdT-bFcvX-MXldFo6_CFVshJCgLFjLAaHUorKi5FVVOua8llIqLR0qwREkt0Igauc9OiW19FqJO1KcY12KOSf05pC6B9LJMDC9uenMTW9uevOOH5_5r1Dj6X_YrBdT_jYDrsu-6Ol8GLDtsGNqOqs_Sx5_YRer6UX2YePFN-QqdWY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Human body posture recognition algorithm for still images</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yu, Naigong ; Lv, Jian</creator><creatorcontrib>Yu, Naigong ; Lv, Jian</creatorcontrib><description>Aiming at the low accuracy and poor robustness of the current algorithm based on manual features, this study proposed a posture recognition method combining joint point information with convolutional neural network. The deformable convolution is used in the proposed method to improve the stacked hourglass model, so that it can extract the position of the human joint point accurately. At the same time, the convolutional neural network structure is designed to analyse the position information and confidence of the joint point autonomously, and extract the intrinsic link of the joint point of the human body. Finally, the softmax classifier is used to determine the pose category. Experimental verification has been carried out on the Willow data set. Moreover, the recognition accuracy demonstrates the effectiveness and superiority of the improved method.</description><identifier>ISSN: 2051-3305</identifier><identifier>EISSN: 2051-3305</identifier><identifier>DOI: 10.1049/joe.2019.1146</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>convolutional neural nets ; convolutional neural network structure ; deformable convolution ; human body posture recognition algorithm ; human joint point ; image classification ; image recognition ; joint point information ; manual features ; pose estimation ; position information ; posture recognition method ; recognition accuracy ; stacked hourglass model ; still images ; The 3rd Asian Conference on Artificial Intelligence Technology (ACAIT 2019)</subject><ispartof>Journal of engineering (Stevenage, England), 2020-07, Vol.2020 (13), p.322-325</ispartof><rights>2021 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2735-d33405a0aa20e0893ba382bb8c1cf9444594ce532e042a33ee9cffec5494f953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fjoe.2019.1146$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fjoe.2019.1146$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids></links><search><creatorcontrib>Yu, Naigong</creatorcontrib><creatorcontrib>Lv, Jian</creatorcontrib><title>Human body posture recognition algorithm for still images</title><title>Journal of engineering (Stevenage, England)</title><description>Aiming at the low accuracy and poor robustness of the current algorithm based on manual features, this study proposed a posture recognition method combining joint point information with convolutional neural network. The deformable convolution is used in the proposed method to improve the stacked hourglass model, so that it can extract the position of the human joint point accurately. At the same time, the convolutional neural network structure is designed to analyse the position information and confidence of the joint point autonomously, and extract the intrinsic link of the joint point of the human body. Finally, the softmax classifier is used to determine the pose category. Experimental verification has been carried out on the Willow data set. Moreover, the recognition accuracy demonstrates the effectiveness and superiority of the improved method.</description><subject>convolutional neural nets</subject><subject>convolutional neural network structure</subject><subject>deformable convolution</subject><subject>human body posture recognition algorithm</subject><subject>human joint point</subject><subject>image classification</subject><subject>image recognition</subject><subject>joint point information</subject><subject>manual features</subject><subject>pose estimation</subject><subject>position information</subject><subject>posture recognition method</subject><subject>recognition accuracy</subject><subject>stacked hourglass model</subject><subject>still images</subject><subject>The 3rd Asian Conference on Artificial Intelligence Technology (ACAIT 2019)</subject><issn>2051-3305</issn><issn>2051-3305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9jz1PAkEQhjdGE4lS2m9jYXE4-4W3pRIQCQkN_WZvmcUlxy3ZPWL4994FCwq1mimeed95CHlgMGIg9fMu4ogD0yPG5PiKDDgoVggB6vpivyXDnHcAwITkINmA6Plxbxtaxc2JHmJujwlpQhe3TWhDbKittzGF9nNPfUw0t6GuadjbLeZ7cuNtnXH4M-_IejZdT-bFcvX-MXldFo6_CFVshJCgLFjLAaHUorKi5FVVOua8llIqLR0qwREkt0Igauc9OiW19FqJO1KcY12KOSf05pC6B9LJMDC9uenMTW9uevOOH5_5r1Dj6X_YrBdT_jYDrsu-6Ol8GLDtsGNqOqs_Sx5_YRer6UX2YePFN-QqdWY</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Yu, Naigong</creator><creator>Lv, Jian</creator><general>The Institution of Engineering and Technology</general><scope>IDLOA</scope><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202007</creationdate><title>Human body posture recognition algorithm for still images</title><author>Yu, Naigong ; Lv, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2735-d33405a0aa20e0893ba382bb8c1cf9444594ce532e042a33ee9cffec5494f953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>convolutional neural nets</topic><topic>convolutional neural network structure</topic><topic>deformable convolution</topic><topic>human body posture recognition algorithm</topic><topic>human joint point</topic><topic>image classification</topic><topic>image recognition</topic><topic>joint point information</topic><topic>manual features</topic><topic>pose estimation</topic><topic>position information</topic><topic>posture recognition method</topic><topic>recognition accuracy</topic><topic>stacked hourglass model</topic><topic>still images</topic><topic>The 3rd Asian Conference on Artificial Intelligence Technology (ACAIT 2019)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Naigong</creatorcontrib><creatorcontrib>Lv, Jian</creatorcontrib><collection>IET Digital Library (Open Access)</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>Journal of engineering (Stevenage, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Naigong</au><au>Lv, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human body posture recognition algorithm for still images</atitle><jtitle>Journal of engineering (Stevenage, England)</jtitle><date>2020-07</date><risdate>2020</risdate><volume>2020</volume><issue>13</issue><spage>322</spage><epage>325</epage><pages>322-325</pages><issn>2051-3305</issn><eissn>2051-3305</eissn><abstract>Aiming at the low accuracy and poor robustness of the current algorithm based on manual features, this study proposed a posture recognition method combining joint point information with convolutional neural network. The deformable convolution is used in the proposed method to improve the stacked hourglass model, so that it can extract the position of the human joint point accurately. At the same time, the convolutional neural network structure is designed to analyse the position information and confidence of the joint point autonomously, and extract the intrinsic link of the joint point of the human body. Finally, the softmax classifier is used to determine the pose category. Experimental verification has been carried out on the Willow data set. Moreover, the recognition accuracy demonstrates the effectiveness and superiority of the improved method.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/joe.2019.1146</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2051-3305
ispartof Journal of engineering (Stevenage, England), 2020-07, Vol.2020 (13), p.322-325
issn 2051-3305
2051-3305
language eng
recordid cdi_iet_journals_10_1049_joe_2019_1146
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects convolutional neural nets
convolutional neural network structure
deformable convolution
human body posture recognition algorithm
human joint point
image classification
image recognition
joint point information
manual features
pose estimation
position information
posture recognition method
recognition accuracy
stacked hourglass model
still images
The 3rd Asian Conference on Artificial Intelligence Technology (ACAIT 2019)
title Human body posture recognition algorithm for still images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_iet_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20body%20posture%20recognition%20algorithm%20for%20still%20images&rft.jtitle=Journal%20of%20engineering%20(Stevenage,%20England)&rft.au=Yu,%20Naigong&rft.date=2020-07&rft.volume=2020&rft.issue=13&rft.spage=322&rft.epage=325&rft.pages=322-325&rft.issn=2051-3305&rft.eissn=2051-3305&rft_id=info:doi/10.1049/joe.2019.1146&rft_dat=%3Cwiley_iet_j%3ETJE2BF02985%3C/wiley_iet_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true