Human body posture recognition algorithm for still images
Aiming at the low accuracy and poor robustness of the current algorithm based on manual features, this study proposed a posture recognition method combining joint point information with convolutional neural network. The deformable convolution is used in the proposed method to improve the stacked hou...
Gespeichert in:
Veröffentlicht in: | Journal of engineering (Stevenage, England) England), 2020-07, Vol.2020 (13), p.322-325 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 325 |
---|---|
container_issue | 13 |
container_start_page | 322 |
container_title | Journal of engineering (Stevenage, England) |
container_volume | 2020 |
creator | Yu, Naigong Lv, Jian |
description | Aiming at the low accuracy and poor robustness of the current algorithm based on manual features, this study proposed a posture recognition method combining joint point information with convolutional neural network. The deformable convolution is used in the proposed method to improve the stacked hourglass model, so that it can extract the position of the human joint point accurately. At the same time, the convolutional neural network structure is designed to analyse the position information and confidence of the joint point autonomously, and extract the intrinsic link of the joint point of the human body. Finally, the softmax classifier is used to determine the pose category. Experimental verification has been carried out on the Willow data set. Moreover, the recognition accuracy demonstrates the effectiveness and superiority of the improved method. |
doi_str_mv | 10.1049/joe.2019.1146 |
format | Article |
fullrecord | <record><control><sourceid>wiley_iet_j</sourceid><recordid>TN_cdi_iet_journals_10_1049_joe_2019_1146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>TJE2BF02985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2735-d33405a0aa20e0893ba382bb8c1cf9444594ce532e042a33ee9cffec5494f953</originalsourceid><addsrcrecordid>eNp9jz1PAkEQhjdGE4lS2m9jYXE4-4W3pRIQCQkN_WZvmcUlxy3ZPWL4994FCwq1mimeed95CHlgMGIg9fMu4ogD0yPG5PiKDDgoVggB6vpivyXDnHcAwITkINmA6Plxbxtaxc2JHmJujwlpQhe3TWhDbKittzGF9nNPfUw0t6GuadjbLeZ7cuNtnXH4M-_IejZdT-bFcvX-MXldFo6_CFVshJCgLFjLAaHUorKi5FVVOua8llIqLR0qwREkt0Igauc9OiW19FqJO1KcY12KOSf05pC6B9LJMDC9uenMTW9uevOOH5_5r1Dj6X_YrBdT_jYDrsu-6Ol8GLDtsGNqOqs_Sx5_YRer6UX2YePFN-QqdWY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Human body posture recognition algorithm for still images</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yu, Naigong ; Lv, Jian</creator><creatorcontrib>Yu, Naigong ; Lv, Jian</creatorcontrib><description>Aiming at the low accuracy and poor robustness of the current algorithm based on manual features, this study proposed a posture recognition method combining joint point information with convolutional neural network. The deformable convolution is used in the proposed method to improve the stacked hourglass model, so that it can extract the position of the human joint point accurately. At the same time, the convolutional neural network structure is designed to analyse the position information and confidence of the joint point autonomously, and extract the intrinsic link of the joint point of the human body. Finally, the softmax classifier is used to determine the pose category. Experimental verification has been carried out on the Willow data set. Moreover, the recognition accuracy demonstrates the effectiveness and superiority of the improved method.</description><identifier>ISSN: 2051-3305</identifier><identifier>EISSN: 2051-3305</identifier><identifier>DOI: 10.1049/joe.2019.1146</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>convolutional neural nets ; convolutional neural network structure ; deformable convolution ; human body posture recognition algorithm ; human joint point ; image classification ; image recognition ; joint point information ; manual features ; pose estimation ; position information ; posture recognition method ; recognition accuracy ; stacked hourglass model ; still images ; The 3rd Asian Conference on Artificial Intelligence Technology (ACAIT 2019)</subject><ispartof>Journal of engineering (Stevenage, England), 2020-07, Vol.2020 (13), p.322-325</ispartof><rights>2021 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2735-d33405a0aa20e0893ba382bb8c1cf9444594ce532e042a33ee9cffec5494f953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fjoe.2019.1146$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fjoe.2019.1146$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids></links><search><creatorcontrib>Yu, Naigong</creatorcontrib><creatorcontrib>Lv, Jian</creatorcontrib><title>Human body posture recognition algorithm for still images</title><title>Journal of engineering (Stevenage, England)</title><description>Aiming at the low accuracy and poor robustness of the current algorithm based on manual features, this study proposed a posture recognition method combining joint point information with convolutional neural network. The deformable convolution is used in the proposed method to improve the stacked hourglass model, so that it can extract the position of the human joint point accurately. At the same time, the convolutional neural network structure is designed to analyse the position information and confidence of the joint point autonomously, and extract the intrinsic link of the joint point of the human body. Finally, the softmax classifier is used to determine the pose category. Experimental verification has been carried out on the Willow data set. Moreover, the recognition accuracy demonstrates the effectiveness and superiority of the improved method.</description><subject>convolutional neural nets</subject><subject>convolutional neural network structure</subject><subject>deformable convolution</subject><subject>human body posture recognition algorithm</subject><subject>human joint point</subject><subject>image classification</subject><subject>image recognition</subject><subject>joint point information</subject><subject>manual features</subject><subject>pose estimation</subject><subject>position information</subject><subject>posture recognition method</subject><subject>recognition accuracy</subject><subject>stacked hourglass model</subject><subject>still images</subject><subject>The 3rd Asian Conference on Artificial Intelligence Technology (ACAIT 2019)</subject><issn>2051-3305</issn><issn>2051-3305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9jz1PAkEQhjdGE4lS2m9jYXE4-4W3pRIQCQkN_WZvmcUlxy3ZPWL4994FCwq1mimeed95CHlgMGIg9fMu4ogD0yPG5PiKDDgoVggB6vpivyXDnHcAwITkINmA6Plxbxtaxc2JHmJujwlpQhe3TWhDbKittzGF9nNPfUw0t6GuadjbLeZ7cuNtnXH4M-_IejZdT-bFcvX-MXldFo6_CFVshJCgLFjLAaHUorKi5FVVOua8llIqLR0qwREkt0Igauc9OiW19FqJO1KcY12KOSf05pC6B9LJMDC9uenMTW9uevOOH5_5r1Dj6X_YrBdT_jYDrsu-6Ol8GLDtsGNqOqs_Sx5_YRer6UX2YePFN-QqdWY</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Yu, Naigong</creator><creator>Lv, Jian</creator><general>The Institution of Engineering and Technology</general><scope>IDLOA</scope><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202007</creationdate><title>Human body posture recognition algorithm for still images</title><author>Yu, Naigong ; Lv, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2735-d33405a0aa20e0893ba382bb8c1cf9444594ce532e042a33ee9cffec5494f953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>convolutional neural nets</topic><topic>convolutional neural network structure</topic><topic>deformable convolution</topic><topic>human body posture recognition algorithm</topic><topic>human joint point</topic><topic>image classification</topic><topic>image recognition</topic><topic>joint point information</topic><topic>manual features</topic><topic>pose estimation</topic><topic>position information</topic><topic>posture recognition method</topic><topic>recognition accuracy</topic><topic>stacked hourglass model</topic><topic>still images</topic><topic>The 3rd Asian Conference on Artificial Intelligence Technology (ACAIT 2019)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Naigong</creatorcontrib><creatorcontrib>Lv, Jian</creatorcontrib><collection>IET Digital Library (Open Access)</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>Journal of engineering (Stevenage, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Naigong</au><au>Lv, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human body posture recognition algorithm for still images</atitle><jtitle>Journal of engineering (Stevenage, England)</jtitle><date>2020-07</date><risdate>2020</risdate><volume>2020</volume><issue>13</issue><spage>322</spage><epage>325</epage><pages>322-325</pages><issn>2051-3305</issn><eissn>2051-3305</eissn><abstract>Aiming at the low accuracy and poor robustness of the current algorithm based on manual features, this study proposed a posture recognition method combining joint point information with convolutional neural network. The deformable convolution is used in the proposed method to improve the stacked hourglass model, so that it can extract the position of the human joint point accurately. At the same time, the convolutional neural network structure is designed to analyse the position information and confidence of the joint point autonomously, and extract the intrinsic link of the joint point of the human body. Finally, the softmax classifier is used to determine the pose category. Experimental verification has been carried out on the Willow data set. Moreover, the recognition accuracy demonstrates the effectiveness and superiority of the improved method.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/joe.2019.1146</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-3305 |
ispartof | Journal of engineering (Stevenage, England), 2020-07, Vol.2020 (13), p.322-325 |
issn | 2051-3305 2051-3305 |
language | eng |
recordid | cdi_iet_journals_10_1049_joe_2019_1146 |
source | Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | convolutional neural nets convolutional neural network structure deformable convolution human body posture recognition algorithm human joint point image classification image recognition joint point information manual features pose estimation position information posture recognition method recognition accuracy stacked hourglass model still images The 3rd Asian Conference on Artificial Intelligence Technology (ACAIT 2019) |
title | Human body posture recognition algorithm for still images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_iet_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20body%20posture%20recognition%20algorithm%20for%20still%20images&rft.jtitle=Journal%20of%20engineering%20(Stevenage,%20England)&rft.au=Yu,%20Naigong&rft.date=2020-07&rft.volume=2020&rft.issue=13&rft.spage=322&rft.epage=325&rft.pages=322-325&rft.issn=2051-3305&rft.eissn=2051-3305&rft_id=info:doi/10.1049/joe.2019.1146&rft_dat=%3Cwiley_iet_j%3ETJE2BF02985%3C/wiley_iet_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |