Improved multiscale local phase quantisation histogram for the recognition of blurred dorsal hand vein images
Vein texture elements in images are sometimes degraded due to centrally symmetric blur, e.g. due to motion of hand or camera not being in focus, which significantly affects recognition systems performance. Multiscale local phase quantisation (MLPQ) can effectively improve system accuracy in the pres...
Gespeichert in:
Veröffentlicht in: | Electronics letters 2020-11, Vol.56 (23), p.1232-1235 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1235 |
---|---|
container_issue | 23 |
container_start_page | 1232 |
container_title | Electronics letters |
container_volume | 56 |
creator | Liu, Fu Jiang, Shoukun Kang, Bing Hou, Tao |
description | Vein texture elements in images are sometimes degraded due to centrally symmetric blur, e.g. due to motion of hand or camera not being in focus, which significantly affects recognition systems performance. Multiscale local phase quantisation (MLPQ) can effectively improve system accuracy in the presence of blur by dividing vein images into non-overlapping blocks and extracting multiscale local phase information. However, MLPQ misses some important discriminant information at the intersections of different regions, which leaves room for improving the system performance. In the present work, a multiscale overlapping blocks local phase quantisation (MOLPQ) histogram algorithm is presented to divide the vein image into overlapping blocks and extract multiscale local phase information, which includes the discriminant information lost in MLPQ. MOLPQ is validated via comparison with state-of-the-art recognition algorithms on a normal hand vein database, artificial-blur databases, and a normal-blur database, and the accuracies on the normal hand vein and normal-blur databases are 99.57 and 98.07%, respectively. Additionally, MOLPQ outperforms other methods on all databases in terms of accuracy. |
doi_str_mv | 10.1049/el.2020.2213 |
format | Article |
fullrecord | <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_iet_journals_10_1049_el_2020_2213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ELL2BF07317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3097-c636d61fa546c4b4b423cd98c3dc02b94b9a9eb8b8c60c690e8b8a0c284dc46c3</originalsourceid><addsrcrecordid>eNqNkE9LAzEQxYMoWGpvfoAcBd062WS3m6OWVgsFLwrelmx2to3sbmqyW-m3N_2DJxGZwwyZ93tMHiHXDMYMhLzHehxDDOM4ZvyMDBhPIJKMvZ-TAQDjUcKkuCQj700BTDCRgmAD0iyajbNbLGnT153xWtVIaxsa3ayVR_rZqza8q87Ylq6N7-zKqYZW1tFujdShtqvWHLa2okXdOxfMSut8sFirtqRbNC01jVqhvyIXlao9jk59SN7ms9fpc7R8eVpMH5aR5iAnkU55WqasUolItShCxVyXMtO81BAXUhRSSSyyItMp6FQChlGBjjNR6oDwIbk7-mpnvXdY5RsXLnC7nEG-TyvHOt-nle_TCvLsKP_CwlZeG2w1_iAAkGQZz2QaJhBT0x3CmNq-7QJ6-380qJOT2tS4-_OofLZcxo9zmHA2CdzNkTPY5R-2d21I7_e_fAPxipzu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improved multiscale local phase quantisation histogram for the recognition of blurred dorsal hand vein images</title><source>Wiley Online Library Open Access</source><creator>Liu, Fu ; Jiang, Shoukun ; Kang, Bing ; Hou, Tao</creator><creatorcontrib>Liu, Fu ; Jiang, Shoukun ; Kang, Bing ; Hou, Tao</creatorcontrib><description>Vein texture elements in images are sometimes degraded due to centrally symmetric blur, e.g. due to motion of hand or camera not being in focus, which significantly affects recognition systems performance. Multiscale local phase quantisation (MLPQ) can effectively improve system accuracy in the presence of blur by dividing vein images into non-overlapping blocks and extracting multiscale local phase information. However, MLPQ misses some important discriminant information at the intersections of different regions, which leaves room for improving the system performance. In the present work, a multiscale overlapping blocks local phase quantisation (MOLPQ) histogram algorithm is presented to divide the vein image into overlapping blocks and extract multiscale local phase information, which includes the discriminant information lost in MLPQ. MOLPQ is validated via comparison with state-of-the-art recognition algorithms on a normal hand vein database, artificial-blur databases, and a normal-blur database, and the accuracies on the normal hand vein and normal-blur databases are 99.57 and 98.07%, respectively. Additionally, MOLPQ outperforms other methods on all databases in terms of accuracy.</description><identifier>ISSN: 0013-5194</identifier><identifier>ISSN: 1350-911X</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/el.2020.2213</identifier><language>eng</language><publisher>HERTFORD: The Institution of Engineering and Technology</publisher><subject>artificial‐blur databases ; Biomedical technology ; blurred dorsal hand vein images ; dividing vein images ; Engineering ; Engineering, Electrical & Electronic ; extracting multiscale local phase information ; feature extraction ; image classification ; image representation ; image texture ; important discriminant information ; MLPQ ; MOLPQ ; multiscale local phase quantisation histogram ; multiscale overlapping blocks local phase quantisation histogram algorithm ; nonoverlapping blocks ; normal hand vein database ; normal‐blur database ; quantisation (signal) ; recognition systems performance ; Science & Technology ; state‐of‐the‐art recognition algorithms ; system performance ; Technology ; vein image ; vein texture elements</subject><ispartof>Electronics letters, 2020-11, Vol.56 (23), p.1232-1235</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000588389600004</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c3097-c636d61fa546c4b4b423cd98c3dc02b94b9a9eb8b8c60c690e8b8a0c284dc46c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fel.2020.2213$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fel.2020.2213$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,11567,27929,27930,28253,45579,45580,46057,46481</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2020.2213$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Liu, Fu</creatorcontrib><creatorcontrib>Jiang, Shoukun</creatorcontrib><creatorcontrib>Kang, Bing</creatorcontrib><creatorcontrib>Hou, Tao</creatorcontrib><title>Improved multiscale local phase quantisation histogram for the recognition of blurred dorsal hand vein images</title><title>Electronics letters</title><addtitle>ELECTRON LETT</addtitle><description>Vein texture elements in images are sometimes degraded due to centrally symmetric blur, e.g. due to motion of hand or camera not being in focus, which significantly affects recognition systems performance. Multiscale local phase quantisation (MLPQ) can effectively improve system accuracy in the presence of blur by dividing vein images into non-overlapping blocks and extracting multiscale local phase information. However, MLPQ misses some important discriminant information at the intersections of different regions, which leaves room for improving the system performance. In the present work, a multiscale overlapping blocks local phase quantisation (MOLPQ) histogram algorithm is presented to divide the vein image into overlapping blocks and extract multiscale local phase information, which includes the discriminant information lost in MLPQ. MOLPQ is validated via comparison with state-of-the-art recognition algorithms on a normal hand vein database, artificial-blur databases, and a normal-blur database, and the accuracies on the normal hand vein and normal-blur databases are 99.57 and 98.07%, respectively. Additionally, MOLPQ outperforms other methods on all databases in terms of accuracy.</description><subject>artificial‐blur databases</subject><subject>Biomedical technology</subject><subject>blurred dorsal hand vein images</subject><subject>dividing vein images</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>extracting multiscale local phase information</subject><subject>feature extraction</subject><subject>image classification</subject><subject>image representation</subject><subject>image texture</subject><subject>important discriminant information</subject><subject>MLPQ</subject><subject>MOLPQ</subject><subject>multiscale local phase quantisation histogram</subject><subject>multiscale overlapping blocks local phase quantisation histogram algorithm</subject><subject>nonoverlapping blocks</subject><subject>normal hand vein database</subject><subject>normal‐blur database</subject><subject>quantisation (signal)</subject><subject>recognition systems performance</subject><subject>Science & Technology</subject><subject>state‐of‐the‐art recognition algorithms</subject><subject>system performance</subject><subject>Technology</subject><subject>vein image</subject><subject>vein texture elements</subject><issn>0013-5194</issn><issn>1350-911X</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkE9LAzEQxYMoWGpvfoAcBd062WS3m6OWVgsFLwrelmx2to3sbmqyW-m3N_2DJxGZwwyZ93tMHiHXDMYMhLzHehxDDOM4ZvyMDBhPIJKMvZ-TAQDjUcKkuCQj700BTDCRgmAD0iyajbNbLGnT153xWtVIaxsa3ayVR_rZqza8q87Ylq6N7-zKqYZW1tFujdShtqvWHLa2okXdOxfMSut8sFirtqRbNC01jVqhvyIXlao9jk59SN7ms9fpc7R8eVpMH5aR5iAnkU55WqasUolItShCxVyXMtO81BAXUhRSSSyyItMp6FQChlGBjjNR6oDwIbk7-mpnvXdY5RsXLnC7nEG-TyvHOt-nle_TCvLsKP_CwlZeG2w1_iAAkGQZz2QaJhBT0x3CmNq-7QJ6-380qJOT2tS4-_OofLZcxo9zmHA2CdzNkTPY5R-2d21I7_e_fAPxipzu</recordid><startdate>20201112</startdate><enddate>20201112</enddate><creator>Liu, Fu</creator><creator>Jiang, Shoukun</creator><creator>Kang, Bing</creator><creator>Hou, Tao</creator><general>The Institution of Engineering and Technology</general><general>Inst Engineering Technology-Iet</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201112</creationdate><title>Improved multiscale local phase quantisation histogram for the recognition of blurred dorsal hand vein images</title><author>Liu, Fu ; Jiang, Shoukun ; Kang, Bing ; Hou, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3097-c636d61fa546c4b4b423cd98c3dc02b94b9a9eb8b8c60c690e8b8a0c284dc46c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>artificial‐blur databases</topic><topic>Biomedical technology</topic><topic>blurred dorsal hand vein images</topic><topic>dividing vein images</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>extracting multiscale local phase information</topic><topic>feature extraction</topic><topic>image classification</topic><topic>image representation</topic><topic>image texture</topic><topic>important discriminant information</topic><topic>MLPQ</topic><topic>MOLPQ</topic><topic>multiscale local phase quantisation histogram</topic><topic>multiscale overlapping blocks local phase quantisation histogram algorithm</topic><topic>nonoverlapping blocks</topic><topic>normal hand vein database</topic><topic>normal‐blur database</topic><topic>quantisation (signal)</topic><topic>recognition systems performance</topic><topic>Science & Technology</topic><topic>state‐of‐the‐art recognition algorithms</topic><topic>system performance</topic><topic>Technology</topic><topic>vein image</topic><topic>vein texture elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Fu</creatorcontrib><creatorcontrib>Jiang, Shoukun</creatorcontrib><creatorcontrib>Kang, Bing</creatorcontrib><creatorcontrib>Hou, Tao</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Fu</au><au>Jiang, Shoukun</au><au>Kang, Bing</au><au>Hou, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved multiscale local phase quantisation histogram for the recognition of blurred dorsal hand vein images</atitle><jtitle>Electronics letters</jtitle><stitle>ELECTRON LETT</stitle><date>2020-11-12</date><risdate>2020</risdate><volume>56</volume><issue>23</issue><spage>1232</spage><epage>1235</epage><pages>1232-1235</pages><issn>0013-5194</issn><issn>1350-911X</issn><eissn>1350-911X</eissn><abstract>Vein texture elements in images are sometimes degraded due to centrally symmetric blur, e.g. due to motion of hand or camera not being in focus, which significantly affects recognition systems performance. Multiscale local phase quantisation (MLPQ) can effectively improve system accuracy in the presence of blur by dividing vein images into non-overlapping blocks and extracting multiscale local phase information. However, MLPQ misses some important discriminant information at the intersections of different regions, which leaves room for improving the system performance. In the present work, a multiscale overlapping blocks local phase quantisation (MOLPQ) histogram algorithm is presented to divide the vein image into overlapping blocks and extract multiscale local phase information, which includes the discriminant information lost in MLPQ. MOLPQ is validated via comparison with state-of-the-art recognition algorithms on a normal hand vein database, artificial-blur databases, and a normal-blur database, and the accuracies on the normal hand vein and normal-blur databases are 99.57 and 98.07%, respectively. Additionally, MOLPQ outperforms other methods on all databases in terms of accuracy.</abstract><cop>HERTFORD</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/el.2020.2213</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0013-5194 |
ispartof | Electronics letters, 2020-11, Vol.56 (23), p.1232-1235 |
issn | 0013-5194 1350-911X 1350-911X |
language | eng |
recordid | cdi_iet_journals_10_1049_el_2020_2213 |
source | Wiley Online Library Open Access |
subjects | artificial‐blur databases Biomedical technology blurred dorsal hand vein images dividing vein images Engineering Engineering, Electrical & Electronic extracting multiscale local phase information feature extraction image classification image representation image texture important discriminant information MLPQ MOLPQ multiscale local phase quantisation histogram multiscale overlapping blocks local phase quantisation histogram algorithm nonoverlapping blocks normal hand vein database normal‐blur database quantisation (signal) recognition systems performance Science & Technology state‐of‐the‐art recognition algorithms system performance Technology vein image vein texture elements |
title | Improved multiscale local phase quantisation histogram for the recognition of blurred dorsal hand vein images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A46%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20multiscale%20local%20phase%20quantisation%20histogram%20for%20the%20recognition%20of%20blurred%20dorsal%20hand%20vein%20images&rft.jtitle=Electronics%20letters&rft.au=Liu,%20Fu&rft.date=2020-11-12&rft.volume=56&rft.issue=23&rft.spage=1232&rft.epage=1235&rft.pages=1232-1235&rft.issn=0013-5194&rft.eissn=1350-911X&rft_id=info:doi/10.1049/el.2020.2213&rft_dat=%3Cwiley_24P%3EELL2BF07317%3C/wiley_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |