Improved multiscale local phase quantisation histogram for the recognition of blurred dorsal hand vein images

Vein texture elements in images are sometimes degraded due to centrally symmetric blur, e.g. due to motion of hand or camera not being in focus, which significantly affects recognition systems performance. Multiscale local phase quantisation (MLPQ) can effectively improve system accuracy in the pres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters 2020-11, Vol.56 (23), p.1232-1235
Hauptverfasser: Liu, Fu, Jiang, Shoukun, Kang, Bing, Hou, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1235
container_issue 23
container_start_page 1232
container_title Electronics letters
container_volume 56
creator Liu, Fu
Jiang, Shoukun
Kang, Bing
Hou, Tao
description Vein texture elements in images are sometimes degraded due to centrally symmetric blur, e.g. due to motion of hand or camera not being in focus, which significantly affects recognition systems performance. Multiscale local phase quantisation (MLPQ) can effectively improve system accuracy in the presence of blur by dividing vein images into non-overlapping blocks and extracting multiscale local phase information. However, MLPQ misses some important discriminant information at the intersections of different regions, which leaves room for improving the system performance. In the present work, a multiscale overlapping blocks local phase quantisation (MOLPQ) histogram algorithm is presented to divide the vein image into overlapping blocks and extract multiscale local phase information, which includes the discriminant information lost in MLPQ. MOLPQ is validated via comparison with state-of-the-art recognition algorithms on a normal hand vein database, artificial-blur databases, and a normal-blur database, and the accuracies on the normal hand vein and normal-blur databases are 99.57 and 98.07%, respectively. Additionally, MOLPQ outperforms other methods on all databases in terms of accuracy.
doi_str_mv 10.1049/el.2020.2213
format Article
fullrecord <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_iet_journals_10_1049_el_2020_2213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ELL2BF07317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3097-c636d61fa546c4b4b423cd98c3dc02b94b9a9eb8b8c60c690e8b8a0c284dc46c3</originalsourceid><addsrcrecordid>eNqNkE9LAzEQxYMoWGpvfoAcBd062WS3m6OWVgsFLwrelmx2to3sbmqyW-m3N_2DJxGZwwyZ93tMHiHXDMYMhLzHehxDDOM4ZvyMDBhPIJKMvZ-TAQDjUcKkuCQj700BTDCRgmAD0iyajbNbLGnT153xWtVIaxsa3ayVR_rZqza8q87Ylq6N7-zKqYZW1tFujdShtqvWHLa2okXdOxfMSut8sFirtqRbNC01jVqhvyIXlao9jk59SN7ms9fpc7R8eVpMH5aR5iAnkU55WqasUolItShCxVyXMtO81BAXUhRSSSyyItMp6FQChlGBjjNR6oDwIbk7-mpnvXdY5RsXLnC7nEG-TyvHOt-nle_TCvLsKP_CwlZeG2w1_iAAkGQZz2QaJhBT0x3CmNq-7QJ6-380qJOT2tS4-_OofLZcxo9zmHA2CdzNkTPY5R-2d21I7_e_fAPxipzu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improved multiscale local phase quantisation histogram for the recognition of blurred dorsal hand vein images</title><source>Wiley Online Library Open Access</source><creator>Liu, Fu ; Jiang, Shoukun ; Kang, Bing ; Hou, Tao</creator><creatorcontrib>Liu, Fu ; Jiang, Shoukun ; Kang, Bing ; Hou, Tao</creatorcontrib><description>Vein texture elements in images are sometimes degraded due to centrally symmetric blur, e.g. due to motion of hand or camera not being in focus, which significantly affects recognition systems performance. Multiscale local phase quantisation (MLPQ) can effectively improve system accuracy in the presence of blur by dividing vein images into non-overlapping blocks and extracting multiscale local phase information. However, MLPQ misses some important discriminant information at the intersections of different regions, which leaves room for improving the system performance. In the present work, a multiscale overlapping blocks local phase quantisation (MOLPQ) histogram algorithm is presented to divide the vein image into overlapping blocks and extract multiscale local phase information, which includes the discriminant information lost in MLPQ. MOLPQ is validated via comparison with state-of-the-art recognition algorithms on a normal hand vein database, artificial-blur databases, and a normal-blur database, and the accuracies on the normal hand vein and normal-blur databases are 99.57 and 98.07%, respectively. Additionally, MOLPQ outperforms other methods on all databases in terms of accuracy.</description><identifier>ISSN: 0013-5194</identifier><identifier>ISSN: 1350-911X</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/el.2020.2213</identifier><language>eng</language><publisher>HERTFORD: The Institution of Engineering and Technology</publisher><subject>artificial‐blur databases ; Biomedical technology ; blurred dorsal hand vein images ; dividing vein images ; Engineering ; Engineering, Electrical &amp; Electronic ; extracting multiscale local phase information ; feature extraction ; image classification ; image representation ; image texture ; important discriminant information ; MLPQ ; MOLPQ ; multiscale local phase quantisation histogram ; multiscale overlapping blocks local phase quantisation histogram algorithm ; nonoverlapping blocks ; normal hand vein database ; normal‐blur database ; quantisation (signal) ; recognition systems performance ; Science &amp; Technology ; state‐of‐the‐art recognition algorithms ; system performance ; Technology ; vein image ; vein texture elements</subject><ispartof>Electronics letters, 2020-11, Vol.56 (23), p.1232-1235</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000588389600004</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c3097-c636d61fa546c4b4b423cd98c3dc02b94b9a9eb8b8c60c690e8b8a0c284dc46c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fel.2020.2213$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fel.2020.2213$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,11567,27929,27930,28253,45579,45580,46057,46481</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2020.2213$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Liu, Fu</creatorcontrib><creatorcontrib>Jiang, Shoukun</creatorcontrib><creatorcontrib>Kang, Bing</creatorcontrib><creatorcontrib>Hou, Tao</creatorcontrib><title>Improved multiscale local phase quantisation histogram for the recognition of blurred dorsal hand vein images</title><title>Electronics letters</title><addtitle>ELECTRON LETT</addtitle><description>Vein texture elements in images are sometimes degraded due to centrally symmetric blur, e.g. due to motion of hand or camera not being in focus, which significantly affects recognition systems performance. Multiscale local phase quantisation (MLPQ) can effectively improve system accuracy in the presence of blur by dividing vein images into non-overlapping blocks and extracting multiscale local phase information. However, MLPQ misses some important discriminant information at the intersections of different regions, which leaves room for improving the system performance. In the present work, a multiscale overlapping blocks local phase quantisation (MOLPQ) histogram algorithm is presented to divide the vein image into overlapping blocks and extract multiscale local phase information, which includes the discriminant information lost in MLPQ. MOLPQ is validated via comparison with state-of-the-art recognition algorithms on a normal hand vein database, artificial-blur databases, and a normal-blur database, and the accuracies on the normal hand vein and normal-blur databases are 99.57 and 98.07%, respectively. Additionally, MOLPQ outperforms other methods on all databases in terms of accuracy.</description><subject>artificial‐blur databases</subject><subject>Biomedical technology</subject><subject>blurred dorsal hand vein images</subject><subject>dividing vein images</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>extracting multiscale local phase information</subject><subject>feature extraction</subject><subject>image classification</subject><subject>image representation</subject><subject>image texture</subject><subject>important discriminant information</subject><subject>MLPQ</subject><subject>MOLPQ</subject><subject>multiscale local phase quantisation histogram</subject><subject>multiscale overlapping blocks local phase quantisation histogram algorithm</subject><subject>nonoverlapping blocks</subject><subject>normal hand vein database</subject><subject>normal‐blur database</subject><subject>quantisation (signal)</subject><subject>recognition systems performance</subject><subject>Science &amp; Technology</subject><subject>state‐of‐the‐art recognition algorithms</subject><subject>system performance</subject><subject>Technology</subject><subject>vein image</subject><subject>vein texture elements</subject><issn>0013-5194</issn><issn>1350-911X</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkE9LAzEQxYMoWGpvfoAcBd062WS3m6OWVgsFLwrelmx2to3sbmqyW-m3N_2DJxGZwwyZ93tMHiHXDMYMhLzHehxDDOM4ZvyMDBhPIJKMvZ-TAQDjUcKkuCQj700BTDCRgmAD0iyajbNbLGnT153xWtVIaxsa3ayVR_rZqza8q87Ylq6N7-zKqYZW1tFujdShtqvWHLa2okXdOxfMSut8sFirtqRbNC01jVqhvyIXlao9jk59SN7ms9fpc7R8eVpMH5aR5iAnkU55WqasUolItShCxVyXMtO81BAXUhRSSSyyItMp6FQChlGBjjNR6oDwIbk7-mpnvXdY5RsXLnC7nEG-TyvHOt-nle_TCvLsKP_CwlZeG2w1_iAAkGQZz2QaJhBT0x3CmNq-7QJ6-380qJOT2tS4-_OofLZcxo9zmHA2CdzNkTPY5R-2d21I7_e_fAPxipzu</recordid><startdate>20201112</startdate><enddate>20201112</enddate><creator>Liu, Fu</creator><creator>Jiang, Shoukun</creator><creator>Kang, Bing</creator><creator>Hou, Tao</creator><general>The Institution of Engineering and Technology</general><general>Inst Engineering Technology-Iet</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201112</creationdate><title>Improved multiscale local phase quantisation histogram for the recognition of blurred dorsal hand vein images</title><author>Liu, Fu ; Jiang, Shoukun ; Kang, Bing ; Hou, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3097-c636d61fa546c4b4b423cd98c3dc02b94b9a9eb8b8c60c690e8b8a0c284dc46c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>artificial‐blur databases</topic><topic>Biomedical technology</topic><topic>blurred dorsal hand vein images</topic><topic>dividing vein images</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>extracting multiscale local phase information</topic><topic>feature extraction</topic><topic>image classification</topic><topic>image representation</topic><topic>image texture</topic><topic>important discriminant information</topic><topic>MLPQ</topic><topic>MOLPQ</topic><topic>multiscale local phase quantisation histogram</topic><topic>multiscale overlapping blocks local phase quantisation histogram algorithm</topic><topic>nonoverlapping blocks</topic><topic>normal hand vein database</topic><topic>normal‐blur database</topic><topic>quantisation (signal)</topic><topic>recognition systems performance</topic><topic>Science &amp; Technology</topic><topic>state‐of‐the‐art recognition algorithms</topic><topic>system performance</topic><topic>Technology</topic><topic>vein image</topic><topic>vein texture elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Fu</creatorcontrib><creatorcontrib>Jiang, Shoukun</creatorcontrib><creatorcontrib>Kang, Bing</creatorcontrib><creatorcontrib>Hou, Tao</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Fu</au><au>Jiang, Shoukun</au><au>Kang, Bing</au><au>Hou, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved multiscale local phase quantisation histogram for the recognition of blurred dorsal hand vein images</atitle><jtitle>Electronics letters</jtitle><stitle>ELECTRON LETT</stitle><date>2020-11-12</date><risdate>2020</risdate><volume>56</volume><issue>23</issue><spage>1232</spage><epage>1235</epage><pages>1232-1235</pages><issn>0013-5194</issn><issn>1350-911X</issn><eissn>1350-911X</eissn><abstract>Vein texture elements in images are sometimes degraded due to centrally symmetric blur, e.g. due to motion of hand or camera not being in focus, which significantly affects recognition systems performance. Multiscale local phase quantisation (MLPQ) can effectively improve system accuracy in the presence of blur by dividing vein images into non-overlapping blocks and extracting multiscale local phase information. However, MLPQ misses some important discriminant information at the intersections of different regions, which leaves room for improving the system performance. In the present work, a multiscale overlapping blocks local phase quantisation (MOLPQ) histogram algorithm is presented to divide the vein image into overlapping blocks and extract multiscale local phase information, which includes the discriminant information lost in MLPQ. MOLPQ is validated via comparison with state-of-the-art recognition algorithms on a normal hand vein database, artificial-blur databases, and a normal-blur database, and the accuracies on the normal hand vein and normal-blur databases are 99.57 and 98.07%, respectively. Additionally, MOLPQ outperforms other methods on all databases in terms of accuracy.</abstract><cop>HERTFORD</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/el.2020.2213</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0013-5194
ispartof Electronics letters, 2020-11, Vol.56 (23), p.1232-1235
issn 0013-5194
1350-911X
1350-911X
language eng
recordid cdi_iet_journals_10_1049_el_2020_2213
source Wiley Online Library Open Access
subjects artificial‐blur databases
Biomedical technology
blurred dorsal hand vein images
dividing vein images
Engineering
Engineering, Electrical & Electronic
extracting multiscale local phase information
feature extraction
image classification
image representation
image texture
important discriminant information
MLPQ
MOLPQ
multiscale local phase quantisation histogram
multiscale overlapping blocks local phase quantisation histogram algorithm
nonoverlapping blocks
normal hand vein database
normal‐blur database
quantisation (signal)
recognition systems performance
Science & Technology
state‐of‐the‐art recognition algorithms
system performance
Technology
vein image
vein texture elements
title Improved multiscale local phase quantisation histogram for the recognition of blurred dorsal hand vein images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A46%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20multiscale%20local%20phase%20quantisation%20histogram%20for%20the%20recognition%20of%20blurred%20dorsal%20hand%20vein%20images&rft.jtitle=Electronics%20letters&rft.au=Liu,%20Fu&rft.date=2020-11-12&rft.volume=56&rft.issue=23&rft.spage=1232&rft.epage=1235&rft.pages=1232-1235&rft.issn=0013-5194&rft.eissn=1350-911X&rft_id=info:doi/10.1049/el.2020.2213&rft_dat=%3Cwiley_24P%3EELL2BF07317%3C/wiley_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true