Ferrite-based room temperature negative temperature coefficient printed thermistors

Two screen printing inks were developed for the low-temperature fabrication of printed and flexible thick film negative temperature coefficient thermistors able to operate at room temperature. The first of the two screen printing inks developed utilised cobalt ferrite (CoFe2O4) as the temperature se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters 2020-11, Vol.56 (24), p.1322-1324
Hauptverfasser: McGhee, J.R, Sagu, J.S, Southee, D.J, Evans, P.S.A, Wijayantha, K.G.U
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1324
container_issue 24
container_start_page 1322
container_title Electronics letters
container_volume 56
creator McGhee, J.R
Sagu, J.S
Southee, D.J
Evans, P.S.A
Wijayantha, K.G.U
description Two screen printing inks were developed for the low-temperature fabrication of printed and flexible thick film negative temperature coefficient thermistors able to operate at room temperature. The first of the two screen printing inks developed utilised cobalt ferrite (CoFe2O4) as the temperature sensing material with the second ink incorporating manganese ferrite (MnFe2O4). These were then screen printed onto lithographically printed silver interdigitated electrodes with a 200 µm track and gap using a synthetic paper (Teslin) as the substrate. The inks required a 10 min curing step at 80°C. Pre-annealing of the ferrite powders before ink formulation enabled the avoidance of high-temperature processing post-fabrication typically required in industrial thermistor production. The printed thermistors were tested at a controlled constant humidity between 15 and 50°C. Both materials demonstrated typical natural logarithmic responses with high linearity and sensitivity.
doi_str_mv 10.1049/el.2020.2158
format Article
fullrecord <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_iet_journals_10_1049_el_2020_2158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ELL2BF07336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3816-ccdf701db9254ff63395099cee64daa73f2b282ae2c5f0f4b97dfd36d50f29cb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGpv_oA9ePDg1nzuNkctrQoLHlTwFrLJRCP7UZJU6b93l3pQKJ4GhucZ3nkROid4TjCX19DMKaZ4TolYHKEJYQLnkpDXYzTBmLBcEMlP0SxGX2PCCS8wJxP0tIYQfIK81hFsFvq-zRK0Gwg6bQNkHbzp5D_hz9L04Jw3HrqUbYLv0mCmdwitj6kP8QydON1EmP3MKXpZr56X93n1ePewvKlywxakyI2xrsTE1pIK7lzBmBRYSgNQcKt1yRyt6YJqoEY47HgtS-ssK6zAjkpTsym62t81oY8xgFNDmFaHnSJYjZ0oaNTYiRo7GXCxx798A7t_WbWqKnq7xiVjxeBd7D0PSX3029ANTw3EL3xj3YBdHsAOJvkGNJZ_kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ferrite-based room temperature negative temperature coefficient printed thermistors</title><source>Wiley Online Library (Open Access Collection)</source><creator>McGhee, J.R ; Sagu, J.S ; Southee, D.J ; Evans, P.S.A ; Wijayantha, K.G.U</creator><creatorcontrib>McGhee, J.R ; Sagu, J.S ; Southee, D.J ; Evans, P.S.A ; Wijayantha, K.G.U</creatorcontrib><description>Two screen printing inks were developed for the low-temperature fabrication of printed and flexible thick film negative temperature coefficient thermistors able to operate at room temperature. The first of the two screen printing inks developed utilised cobalt ferrite (CoFe2O4) as the temperature sensing material with the second ink incorporating manganese ferrite (MnFe2O4). These were then screen printed onto lithographically printed silver interdigitated electrodes with a 200 µm track and gap using a synthetic paper (Teslin) as the substrate. The inks required a 10 min curing step at 80°C. Pre-annealing of the ferrite powders before ink formulation enabled the avoidance of high-temperature processing post-fabrication typically required in industrial thermistor production. The printed thermistors were tested at a controlled constant humidity between 15 and 50°C. Both materials demonstrated typical natural logarithmic responses with high linearity and sensitivity.</description><identifier>ISSN: 0013-5194</identifier><identifier>ISSN: 1350-911X</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/el.2020.2158</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>annealing ; cobalt compounds ; cobalt ferrite ; CoFe2 O4 ‐MnFe2 O4 ; controlled constant humidity ; curing ; curing step ; ferrite devices ; ferrite powders ; ferrites ; ferrite‐based room temperature negative temperature coefficient printed thermistors ; flexible thick film negative temperature coefficient thermistors ; high‐temperature processing post‐fabrication ; industrial thermistor production ; ink ; ink formulation ; Instrumentation and measurement ; lithographically printed silver interdigitated electrodes ; low‐temperature fabrication ; manganese compounds ; manganese ferrite ; natural logarithmic responses ; preannealing ; printed thick film negative temperature coefficient thermistors ; screen printing inks ; size 200.0 mum ; synthetic paper ; temperature 15.0 degC to 50.0 degC ; temperature 80.0 degC ; temperature sensing material ; temperature sensors ; Teslin ; thermistors ; thick film sensors ; thick films ; time 10.0 min</subject><ispartof>Electronics letters, 2020-11, Vol.56 (24), p.1322-1324</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3816-ccdf701db9254ff63395099cee64daa73f2b282ae2c5f0f4b97dfd36d50f29cb3</citedby><cites>FETCH-LOGICAL-c3816-ccdf701db9254ff63395099cee64daa73f2b282ae2c5f0f4b97dfd36d50f29cb3</cites><orcidid>0000-0001-7372-1966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fel.2020.2158$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fel.2020.2158$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2020.2158$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>McGhee, J.R</creatorcontrib><creatorcontrib>Sagu, J.S</creatorcontrib><creatorcontrib>Southee, D.J</creatorcontrib><creatorcontrib>Evans, P.S.A</creatorcontrib><creatorcontrib>Wijayantha, K.G.U</creatorcontrib><title>Ferrite-based room temperature negative temperature coefficient printed thermistors</title><title>Electronics letters</title><description>Two screen printing inks were developed for the low-temperature fabrication of printed and flexible thick film negative temperature coefficient thermistors able to operate at room temperature. The first of the two screen printing inks developed utilised cobalt ferrite (CoFe2O4) as the temperature sensing material with the second ink incorporating manganese ferrite (MnFe2O4). These were then screen printed onto lithographically printed silver interdigitated electrodes with a 200 µm track and gap using a synthetic paper (Teslin) as the substrate. The inks required a 10 min curing step at 80°C. Pre-annealing of the ferrite powders before ink formulation enabled the avoidance of high-temperature processing post-fabrication typically required in industrial thermistor production. The printed thermistors were tested at a controlled constant humidity between 15 and 50°C. Both materials demonstrated typical natural logarithmic responses with high linearity and sensitivity.</description><subject>annealing</subject><subject>cobalt compounds</subject><subject>cobalt ferrite</subject><subject>CoFe2 O4 ‐MnFe2 O4</subject><subject>controlled constant humidity</subject><subject>curing</subject><subject>curing step</subject><subject>ferrite devices</subject><subject>ferrite powders</subject><subject>ferrites</subject><subject>ferrite‐based room temperature negative temperature coefficient printed thermistors</subject><subject>flexible thick film negative temperature coefficient thermistors</subject><subject>high‐temperature processing post‐fabrication</subject><subject>industrial thermistor production</subject><subject>ink</subject><subject>ink formulation</subject><subject>Instrumentation and measurement</subject><subject>lithographically printed silver interdigitated electrodes</subject><subject>low‐temperature fabrication</subject><subject>manganese compounds</subject><subject>manganese ferrite</subject><subject>natural logarithmic responses</subject><subject>preannealing</subject><subject>printed thick film negative temperature coefficient thermistors</subject><subject>screen printing inks</subject><subject>size 200.0 mum</subject><subject>synthetic paper</subject><subject>temperature 15.0 degC to 50.0 degC</subject><subject>temperature 80.0 degC</subject><subject>temperature sensing material</subject><subject>temperature sensors</subject><subject>Teslin</subject><subject>thermistors</subject><subject>thick film sensors</subject><subject>thick films</subject><subject>time 10.0 min</subject><issn>0013-5194</issn><issn>1350-911X</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGpv_oA9ePDg1nzuNkctrQoLHlTwFrLJRCP7UZJU6b93l3pQKJ4GhucZ3nkROid4TjCX19DMKaZ4TolYHKEJYQLnkpDXYzTBmLBcEMlP0SxGX2PCCS8wJxP0tIYQfIK81hFsFvq-zRK0Gwg6bQNkHbzp5D_hz9L04Jw3HrqUbYLv0mCmdwitj6kP8QydON1EmP3MKXpZr56X93n1ePewvKlywxakyI2xrsTE1pIK7lzBmBRYSgNQcKt1yRyt6YJqoEY47HgtS-ssK6zAjkpTsym62t81oY8xgFNDmFaHnSJYjZ0oaNTYiRo7GXCxx798A7t_WbWqKnq7xiVjxeBd7D0PSX3029ANTw3EL3xj3YBdHsAOJvkGNJZ_kw</recordid><startdate>20201126</startdate><enddate>20201126</enddate><creator>McGhee, J.R</creator><creator>Sagu, J.S</creator><creator>Southee, D.J</creator><creator>Evans, P.S.A</creator><creator>Wijayantha, K.G.U</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7372-1966</orcidid></search><sort><creationdate>20201126</creationdate><title>Ferrite-based room temperature negative temperature coefficient printed thermistors</title><author>McGhee, J.R ; Sagu, J.S ; Southee, D.J ; Evans, P.S.A ; Wijayantha, K.G.U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3816-ccdf701db9254ff63395099cee64daa73f2b282ae2c5f0f4b97dfd36d50f29cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>annealing</topic><topic>cobalt compounds</topic><topic>cobalt ferrite</topic><topic>CoFe2 O4 ‐MnFe2 O4</topic><topic>controlled constant humidity</topic><topic>curing</topic><topic>curing step</topic><topic>ferrite devices</topic><topic>ferrite powders</topic><topic>ferrites</topic><topic>ferrite‐based room temperature negative temperature coefficient printed thermistors</topic><topic>flexible thick film negative temperature coefficient thermistors</topic><topic>high‐temperature processing post‐fabrication</topic><topic>industrial thermistor production</topic><topic>ink</topic><topic>ink formulation</topic><topic>Instrumentation and measurement</topic><topic>lithographically printed silver interdigitated electrodes</topic><topic>low‐temperature fabrication</topic><topic>manganese compounds</topic><topic>manganese ferrite</topic><topic>natural logarithmic responses</topic><topic>preannealing</topic><topic>printed thick film negative temperature coefficient thermistors</topic><topic>screen printing inks</topic><topic>size 200.0 mum</topic><topic>synthetic paper</topic><topic>temperature 15.0 degC to 50.0 degC</topic><topic>temperature 80.0 degC</topic><topic>temperature sensing material</topic><topic>temperature sensors</topic><topic>Teslin</topic><topic>thermistors</topic><topic>thick film sensors</topic><topic>thick films</topic><topic>time 10.0 min</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGhee, J.R</creatorcontrib><creatorcontrib>Sagu, J.S</creatorcontrib><creatorcontrib>Southee, D.J</creatorcontrib><creatorcontrib>Evans, P.S.A</creatorcontrib><creatorcontrib>Wijayantha, K.G.U</creatorcontrib><collection>CrossRef</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McGhee, J.R</au><au>Sagu, J.S</au><au>Southee, D.J</au><au>Evans, P.S.A</au><au>Wijayantha, K.G.U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferrite-based room temperature negative temperature coefficient printed thermistors</atitle><jtitle>Electronics letters</jtitle><date>2020-11-26</date><risdate>2020</risdate><volume>56</volume><issue>24</issue><spage>1322</spage><epage>1324</epage><pages>1322-1324</pages><issn>0013-5194</issn><issn>1350-911X</issn><eissn>1350-911X</eissn><abstract>Two screen printing inks were developed for the low-temperature fabrication of printed and flexible thick film negative temperature coefficient thermistors able to operate at room temperature. The first of the two screen printing inks developed utilised cobalt ferrite (CoFe2O4) as the temperature sensing material with the second ink incorporating manganese ferrite (MnFe2O4). These were then screen printed onto lithographically printed silver interdigitated electrodes with a 200 µm track and gap using a synthetic paper (Teslin) as the substrate. The inks required a 10 min curing step at 80°C. Pre-annealing of the ferrite powders before ink formulation enabled the avoidance of high-temperature processing post-fabrication typically required in industrial thermistor production. The printed thermistors were tested at a controlled constant humidity between 15 and 50°C. Both materials demonstrated typical natural logarithmic responses with high linearity and sensitivity.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/el.2020.2158</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0001-7372-1966</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0013-5194
ispartof Electronics letters, 2020-11, Vol.56 (24), p.1322-1324
issn 0013-5194
1350-911X
1350-911X
language eng
recordid cdi_iet_journals_10_1049_el_2020_2158
source Wiley Online Library (Open Access Collection)
subjects annealing
cobalt compounds
cobalt ferrite
CoFe2 O4 ‐MnFe2 O4
controlled constant humidity
curing
curing step
ferrite devices
ferrite powders
ferrites
ferrite‐based room temperature negative temperature coefficient printed thermistors
flexible thick film negative temperature coefficient thermistors
high‐temperature processing post‐fabrication
industrial thermistor production
ink
ink formulation
Instrumentation and measurement
lithographically printed silver interdigitated electrodes
low‐temperature fabrication
manganese compounds
manganese ferrite
natural logarithmic responses
preannealing
printed thick film negative temperature coefficient thermistors
screen printing inks
size 200.0 mum
synthetic paper
temperature 15.0 degC to 50.0 degC
temperature 80.0 degC
temperature sensing material
temperature sensors
Teslin
thermistors
thick film sensors
thick films
time 10.0 min
title Ferrite-based room temperature negative temperature coefficient printed thermistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T03%3A00%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferrite-based%20room%20temperature%20negative%20temperature%20coefficient%20printed%20thermistors&rft.jtitle=Electronics%20letters&rft.au=McGhee,%20J.R&rft.date=2020-11-26&rft.volume=56&rft.issue=24&rft.spage=1322&rft.epage=1324&rft.pages=1322-1324&rft.issn=0013-5194&rft.eissn=1350-911X&rft_id=info:doi/10.1049/el.2020.2158&rft_dat=%3Cwiley_24P%3EELL2BF07336%3C/wiley_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true