Ferrite-based room temperature negative temperature coefficient printed thermistors
Two screen printing inks were developed for the low-temperature fabrication of printed and flexible thick film negative temperature coefficient thermistors able to operate at room temperature. The first of the two screen printing inks developed utilised cobalt ferrite (CoFe2O4) as the temperature se...
Gespeichert in:
Veröffentlicht in: | Electronics letters 2020-11, Vol.56 (24), p.1322-1324 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1324 |
---|---|
container_issue | 24 |
container_start_page | 1322 |
container_title | Electronics letters |
container_volume | 56 |
creator | McGhee, J.R Sagu, J.S Southee, D.J Evans, P.S.A Wijayantha, K.G.U |
description | Two screen printing inks were developed for the low-temperature fabrication of printed and flexible thick film negative temperature coefficient thermistors able to operate at room temperature. The first of the two screen printing inks developed utilised cobalt ferrite (CoFe2O4) as the temperature sensing material with the second ink incorporating manganese ferrite (MnFe2O4). These were then screen printed onto lithographically printed silver interdigitated electrodes with a 200 µm track and gap using a synthetic paper (Teslin) as the substrate. The inks required a 10 min curing step at 80°C. Pre-annealing of the ferrite powders before ink formulation enabled the avoidance of high-temperature processing post-fabrication typically required in industrial thermistor production. The printed thermistors were tested at a controlled constant humidity between 15 and 50°C. Both materials demonstrated typical natural logarithmic responses with high linearity and sensitivity. |
doi_str_mv | 10.1049/el.2020.2158 |
format | Article |
fullrecord | <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_iet_journals_10_1049_el_2020_2158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ELL2BF07336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3816-ccdf701db9254ff63395099cee64daa73f2b282ae2c5f0f4b97dfd36d50f29cb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGpv_oA9ePDg1nzuNkctrQoLHlTwFrLJRCP7UZJU6b93l3pQKJ4GhucZ3nkROid4TjCX19DMKaZ4TolYHKEJYQLnkpDXYzTBmLBcEMlP0SxGX2PCCS8wJxP0tIYQfIK81hFsFvq-zRK0Gwg6bQNkHbzp5D_hz9L04Jw3HrqUbYLv0mCmdwitj6kP8QydON1EmP3MKXpZr56X93n1ePewvKlywxakyI2xrsTE1pIK7lzBmBRYSgNQcKt1yRyt6YJqoEY47HgtS-ssK6zAjkpTsym62t81oY8xgFNDmFaHnSJYjZ0oaNTYiRo7GXCxx798A7t_WbWqKnq7xiVjxeBd7D0PSX3029ANTw3EL3xj3YBdHsAOJvkGNJZ_kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ferrite-based room temperature negative temperature coefficient printed thermistors</title><source>Wiley Online Library (Open Access Collection)</source><creator>McGhee, J.R ; Sagu, J.S ; Southee, D.J ; Evans, P.S.A ; Wijayantha, K.G.U</creator><creatorcontrib>McGhee, J.R ; Sagu, J.S ; Southee, D.J ; Evans, P.S.A ; Wijayantha, K.G.U</creatorcontrib><description>Two screen printing inks were developed for the low-temperature fabrication of printed and flexible thick film negative temperature coefficient thermistors able to operate at room temperature. The first of the two screen printing inks developed utilised cobalt ferrite (CoFe2O4) as the temperature sensing material with the second ink incorporating manganese ferrite (MnFe2O4). These were then screen printed onto lithographically printed silver interdigitated electrodes with a 200 µm track and gap using a synthetic paper (Teslin) as the substrate. The inks required a 10 min curing step at 80°C. Pre-annealing of the ferrite powders before ink formulation enabled the avoidance of high-temperature processing post-fabrication typically required in industrial thermistor production. The printed thermistors were tested at a controlled constant humidity between 15 and 50°C. Both materials demonstrated typical natural logarithmic responses with high linearity and sensitivity.</description><identifier>ISSN: 0013-5194</identifier><identifier>ISSN: 1350-911X</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/el.2020.2158</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>annealing ; cobalt compounds ; cobalt ferrite ; CoFe2 O4 ‐MnFe2 O4 ; controlled constant humidity ; curing ; curing step ; ferrite devices ; ferrite powders ; ferrites ; ferrite‐based room temperature negative temperature coefficient printed thermistors ; flexible thick film negative temperature coefficient thermistors ; high‐temperature processing post‐fabrication ; industrial thermistor production ; ink ; ink formulation ; Instrumentation and measurement ; lithographically printed silver interdigitated electrodes ; low‐temperature fabrication ; manganese compounds ; manganese ferrite ; natural logarithmic responses ; preannealing ; printed thick film negative temperature coefficient thermistors ; screen printing inks ; size 200.0 mum ; synthetic paper ; temperature 15.0 degC to 50.0 degC ; temperature 80.0 degC ; temperature sensing material ; temperature sensors ; Teslin ; thermistors ; thick film sensors ; thick films ; time 10.0 min</subject><ispartof>Electronics letters, 2020-11, Vol.56 (24), p.1322-1324</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3816-ccdf701db9254ff63395099cee64daa73f2b282ae2c5f0f4b97dfd36d50f29cb3</citedby><cites>FETCH-LOGICAL-c3816-ccdf701db9254ff63395099cee64daa73f2b282ae2c5f0f4b97dfd36d50f29cb3</cites><orcidid>0000-0001-7372-1966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fel.2020.2158$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fel.2020.2158$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2020.2158$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>McGhee, J.R</creatorcontrib><creatorcontrib>Sagu, J.S</creatorcontrib><creatorcontrib>Southee, D.J</creatorcontrib><creatorcontrib>Evans, P.S.A</creatorcontrib><creatorcontrib>Wijayantha, K.G.U</creatorcontrib><title>Ferrite-based room temperature negative temperature coefficient printed thermistors</title><title>Electronics letters</title><description>Two screen printing inks were developed for the low-temperature fabrication of printed and flexible thick film negative temperature coefficient thermistors able to operate at room temperature. The first of the two screen printing inks developed utilised cobalt ferrite (CoFe2O4) as the temperature sensing material with the second ink incorporating manganese ferrite (MnFe2O4). These were then screen printed onto lithographically printed silver interdigitated electrodes with a 200 µm track and gap using a synthetic paper (Teslin) as the substrate. The inks required a 10 min curing step at 80°C. Pre-annealing of the ferrite powders before ink formulation enabled the avoidance of high-temperature processing post-fabrication typically required in industrial thermistor production. The printed thermistors were tested at a controlled constant humidity between 15 and 50°C. Both materials demonstrated typical natural logarithmic responses with high linearity and sensitivity.</description><subject>annealing</subject><subject>cobalt compounds</subject><subject>cobalt ferrite</subject><subject>CoFe2 O4 ‐MnFe2 O4</subject><subject>controlled constant humidity</subject><subject>curing</subject><subject>curing step</subject><subject>ferrite devices</subject><subject>ferrite powders</subject><subject>ferrites</subject><subject>ferrite‐based room temperature negative temperature coefficient printed thermistors</subject><subject>flexible thick film negative temperature coefficient thermistors</subject><subject>high‐temperature processing post‐fabrication</subject><subject>industrial thermistor production</subject><subject>ink</subject><subject>ink formulation</subject><subject>Instrumentation and measurement</subject><subject>lithographically printed silver interdigitated electrodes</subject><subject>low‐temperature fabrication</subject><subject>manganese compounds</subject><subject>manganese ferrite</subject><subject>natural logarithmic responses</subject><subject>preannealing</subject><subject>printed thick film negative temperature coefficient thermistors</subject><subject>screen printing inks</subject><subject>size 200.0 mum</subject><subject>synthetic paper</subject><subject>temperature 15.0 degC to 50.0 degC</subject><subject>temperature 80.0 degC</subject><subject>temperature sensing material</subject><subject>temperature sensors</subject><subject>Teslin</subject><subject>thermistors</subject><subject>thick film sensors</subject><subject>thick films</subject><subject>time 10.0 min</subject><issn>0013-5194</issn><issn>1350-911X</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGpv_oA9ePDg1nzuNkctrQoLHlTwFrLJRCP7UZJU6b93l3pQKJ4GhucZ3nkROid4TjCX19DMKaZ4TolYHKEJYQLnkpDXYzTBmLBcEMlP0SxGX2PCCS8wJxP0tIYQfIK81hFsFvq-zRK0Gwg6bQNkHbzp5D_hz9L04Jw3HrqUbYLv0mCmdwitj6kP8QydON1EmP3MKXpZr56X93n1ePewvKlywxakyI2xrsTE1pIK7lzBmBRYSgNQcKt1yRyt6YJqoEY47HgtS-ssK6zAjkpTsym62t81oY8xgFNDmFaHnSJYjZ0oaNTYiRo7GXCxx798A7t_WbWqKnq7xiVjxeBd7D0PSX3029ANTw3EL3xj3YBdHsAOJvkGNJZ_kw</recordid><startdate>20201126</startdate><enddate>20201126</enddate><creator>McGhee, J.R</creator><creator>Sagu, J.S</creator><creator>Southee, D.J</creator><creator>Evans, P.S.A</creator><creator>Wijayantha, K.G.U</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7372-1966</orcidid></search><sort><creationdate>20201126</creationdate><title>Ferrite-based room temperature negative temperature coefficient printed thermistors</title><author>McGhee, J.R ; Sagu, J.S ; Southee, D.J ; Evans, P.S.A ; Wijayantha, K.G.U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3816-ccdf701db9254ff63395099cee64daa73f2b282ae2c5f0f4b97dfd36d50f29cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>annealing</topic><topic>cobalt compounds</topic><topic>cobalt ferrite</topic><topic>CoFe2 O4 ‐MnFe2 O4</topic><topic>controlled constant humidity</topic><topic>curing</topic><topic>curing step</topic><topic>ferrite devices</topic><topic>ferrite powders</topic><topic>ferrites</topic><topic>ferrite‐based room temperature negative temperature coefficient printed thermistors</topic><topic>flexible thick film negative temperature coefficient thermistors</topic><topic>high‐temperature processing post‐fabrication</topic><topic>industrial thermistor production</topic><topic>ink</topic><topic>ink formulation</topic><topic>Instrumentation and measurement</topic><topic>lithographically printed silver interdigitated electrodes</topic><topic>low‐temperature fabrication</topic><topic>manganese compounds</topic><topic>manganese ferrite</topic><topic>natural logarithmic responses</topic><topic>preannealing</topic><topic>printed thick film negative temperature coefficient thermistors</topic><topic>screen printing inks</topic><topic>size 200.0 mum</topic><topic>synthetic paper</topic><topic>temperature 15.0 degC to 50.0 degC</topic><topic>temperature 80.0 degC</topic><topic>temperature sensing material</topic><topic>temperature sensors</topic><topic>Teslin</topic><topic>thermistors</topic><topic>thick film sensors</topic><topic>thick films</topic><topic>time 10.0 min</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGhee, J.R</creatorcontrib><creatorcontrib>Sagu, J.S</creatorcontrib><creatorcontrib>Southee, D.J</creatorcontrib><creatorcontrib>Evans, P.S.A</creatorcontrib><creatorcontrib>Wijayantha, K.G.U</creatorcontrib><collection>CrossRef</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McGhee, J.R</au><au>Sagu, J.S</au><au>Southee, D.J</au><au>Evans, P.S.A</au><au>Wijayantha, K.G.U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferrite-based room temperature negative temperature coefficient printed thermistors</atitle><jtitle>Electronics letters</jtitle><date>2020-11-26</date><risdate>2020</risdate><volume>56</volume><issue>24</issue><spage>1322</spage><epage>1324</epage><pages>1322-1324</pages><issn>0013-5194</issn><issn>1350-911X</issn><eissn>1350-911X</eissn><abstract>Two screen printing inks were developed for the low-temperature fabrication of printed and flexible thick film negative temperature coefficient thermistors able to operate at room temperature. The first of the two screen printing inks developed utilised cobalt ferrite (CoFe2O4) as the temperature sensing material with the second ink incorporating manganese ferrite (MnFe2O4). These were then screen printed onto lithographically printed silver interdigitated electrodes with a 200 µm track and gap using a synthetic paper (Teslin) as the substrate. The inks required a 10 min curing step at 80°C. Pre-annealing of the ferrite powders before ink formulation enabled the avoidance of high-temperature processing post-fabrication typically required in industrial thermistor production. The printed thermistors were tested at a controlled constant humidity between 15 and 50°C. Both materials demonstrated typical natural logarithmic responses with high linearity and sensitivity.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/el.2020.2158</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0001-7372-1966</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0013-5194 |
ispartof | Electronics letters, 2020-11, Vol.56 (24), p.1322-1324 |
issn | 0013-5194 1350-911X 1350-911X |
language | eng |
recordid | cdi_iet_journals_10_1049_el_2020_2158 |
source | Wiley Online Library (Open Access Collection) |
subjects | annealing cobalt compounds cobalt ferrite CoFe2 O4 ‐MnFe2 O4 controlled constant humidity curing curing step ferrite devices ferrite powders ferrites ferrite‐based room temperature negative temperature coefficient printed thermistors flexible thick film negative temperature coefficient thermistors high‐temperature processing post‐fabrication industrial thermistor production ink ink formulation Instrumentation and measurement lithographically printed silver interdigitated electrodes low‐temperature fabrication manganese compounds manganese ferrite natural logarithmic responses preannealing printed thick film negative temperature coefficient thermistors screen printing inks size 200.0 mum synthetic paper temperature 15.0 degC to 50.0 degC temperature 80.0 degC temperature sensing material temperature sensors Teslin thermistors thick film sensors thick films time 10.0 min |
title | Ferrite-based room temperature negative temperature coefficient printed thermistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T03%3A00%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferrite-based%20room%20temperature%20negative%20temperature%20coefficient%20printed%20thermistors&rft.jtitle=Electronics%20letters&rft.au=McGhee,%20J.R&rft.date=2020-11-26&rft.volume=56&rft.issue=24&rft.spage=1322&rft.epage=1324&rft.pages=1322-1324&rft.issn=0013-5194&rft.eissn=1350-911X&rft_id=info:doi/10.1049/el.2020.2158&rft_dat=%3Cwiley_24P%3EELL2BF07336%3C/wiley_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |