On new efficient μ-law-based method for feedback compensation in hearing aids

The affine-projection-like (APL) algorithm is reported to achieve lower computations than affine-projection algorithm (APA) without compromising the steady-state performance. Further, the performance accuracy of the adaptive feedback canceller (AFC) in hearing aids is enhanced using an improved prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters 2016-07, Vol.52 (14), p.1200-1202
Hauptverfasser: Vasundhara, Panda, G, Puhan, N.B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1202
container_issue 14
container_start_page 1200
container_title Electronics letters
container_volume 52
creator Vasundhara
Panda, G
Puhan, N.B
description The affine-projection-like (APL) algorithm is reported to achieve lower computations than affine-projection algorithm (APA) without compromising the steady-state performance. Further, the performance accuracy of the adaptive feedback canceller (AFC) in hearing aids is enhanced using an improved proportionate APL (IPAPL) algorithm. Two new learning algorithms are proposed for AFC, which apply the memory of previous gain factors and μ-law proportionate technique to the IPAPL, termed as memorised IPAPL (MIPAPL) and μ-law MIPAPL (MMIPAPL), respectively. In addition, a segmented approach is also suggested which offers computational advantage over MMIPAPL. The results obtained from simulation-based experiments demonstrate that the proposed methods achieve faster convergence rate than the existing methods.
doi_str_mv 10.1049/el.2016.0483
format Article
fullrecord <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_iet_journals_10_1049_el_2016_0483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ELL2BF03966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3436-b4e7cc4c7256e2e7ba0bc0cb754e4e72e9c6030a35da10aca2b7bd1c14da84213</originalsourceid><addsrcrecordid>eNp90L1OwzAQB3ALgURVuvEAHhgYSLmLnaQZoWoBqaILSGyWPy7UkDpVHFT13XgGnolUZWBATDfc7053f8bOEcYIsrymepwC5mOQE3HEBigySErEl2M2AECRZFjKUzaK0RtAiTIHiQP2uAw80JZTVXnrKXT86zOp9TYxOpLja-pWjeNV0_KKyBlt37lt1hsKUXe-CdwHviLd-vDKtXfxjJ1Uuo40-qlD9jyfPU3vk8Xy7mF6s0iskCJPjKTCWmmLNMsppcJoMBasKTJJfSul0uYgQIvMaQRtdWoK49CidHoiUxRDdnXYa9smxpYqtWn9Wrc7haD2cSiq1T4OtY-j59mBb31Nu3-tmi0W6e0cRJnn_dzFYc5Tp96ajzb0T_XiF9-4qmeXf7A_L_kGp-t8WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On new efficient μ-law-based method for feedback compensation in hearing aids</title><source>Wiley Online Library Open Access</source><creator>Vasundhara ; Panda, G ; Puhan, N.B</creator><creatorcontrib>Vasundhara ; Panda, G ; Puhan, N.B</creatorcontrib><description>The affine-projection-like (APL) algorithm is reported to achieve lower computations than affine-projection algorithm (APA) without compromising the steady-state performance. Further, the performance accuracy of the adaptive feedback canceller (AFC) in hearing aids is enhanced using an improved proportionate APL (IPAPL) algorithm. Two new learning algorithms are proposed for AFC, which apply the memory of previous gain factors and μ-law proportionate technique to the IPAPL, termed as memorised IPAPL (MIPAPL) and μ-law MIPAPL (MMIPAPL), respectively. In addition, a segmented approach is also suggested which offers computational advantage over MMIPAPL. The results obtained from simulation-based experiments demonstrate that the proposed methods achieve faster convergence rate than the existing methods.</description><identifier>ISSN: 0013-5194</identifier><identifier>ISSN: 1350-911X</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/el.2016.0483</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>adaptive feedback canceller ; AFC ; affine‐projection‐like algorithm ; Biomedical technology ; feedback ; feedback compensation ; filtering theory ; gain factors ; hearing aids ; improved proportionate APL ; IPAPL ; learning (artificial intelligence) ; learning algorithms ; medical signal processing ; memorised IPAPL ; MIPAPL ; MMIPAPL ; μ‐law MIPAPL</subject><ispartof>Electronics letters, 2016-07, Vol.52 (14), p.1200-1202</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3436-b4e7cc4c7256e2e7ba0bc0cb754e4e72e9c6030a35da10aca2b7bd1c14da84213</citedby><cites>FETCH-LOGICAL-c3436-b4e7cc4c7256e2e7ba0bc0cb754e4e72e9c6030a35da10aca2b7bd1c14da84213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fel.2016.0483$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fel.2016.0483$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2016.0483$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Vasundhara</creatorcontrib><creatorcontrib>Panda, G</creatorcontrib><creatorcontrib>Puhan, N.B</creatorcontrib><title>On new efficient μ-law-based method for feedback compensation in hearing aids</title><title>Electronics letters</title><description>The affine-projection-like (APL) algorithm is reported to achieve lower computations than affine-projection algorithm (APA) without compromising the steady-state performance. Further, the performance accuracy of the adaptive feedback canceller (AFC) in hearing aids is enhanced using an improved proportionate APL (IPAPL) algorithm. Two new learning algorithms are proposed for AFC, which apply the memory of previous gain factors and μ-law proportionate technique to the IPAPL, termed as memorised IPAPL (MIPAPL) and μ-law MIPAPL (MMIPAPL), respectively. In addition, a segmented approach is also suggested which offers computational advantage over MMIPAPL. The results obtained from simulation-based experiments demonstrate that the proposed methods achieve faster convergence rate than the existing methods.</description><subject>adaptive feedback canceller</subject><subject>AFC</subject><subject>affine‐projection‐like algorithm</subject><subject>Biomedical technology</subject><subject>feedback</subject><subject>feedback compensation</subject><subject>filtering theory</subject><subject>gain factors</subject><subject>hearing aids</subject><subject>improved proportionate APL</subject><subject>IPAPL</subject><subject>learning (artificial intelligence)</subject><subject>learning algorithms</subject><subject>medical signal processing</subject><subject>memorised IPAPL</subject><subject>MIPAPL</subject><subject>MMIPAPL</subject><subject>μ‐law MIPAPL</subject><issn>0013-5194</issn><issn>1350-911X</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90L1OwzAQB3ALgURVuvEAHhgYSLmLnaQZoWoBqaILSGyWPy7UkDpVHFT13XgGnolUZWBATDfc7053f8bOEcYIsrymepwC5mOQE3HEBigySErEl2M2AECRZFjKUzaK0RtAiTIHiQP2uAw80JZTVXnrKXT86zOp9TYxOpLja-pWjeNV0_KKyBlt37lt1hsKUXe-CdwHviLd-vDKtXfxjJ1Uuo40-qlD9jyfPU3vk8Xy7mF6s0iskCJPjKTCWmmLNMsppcJoMBasKTJJfSul0uYgQIvMaQRtdWoK49CidHoiUxRDdnXYa9smxpYqtWn9Wrc7haD2cSiq1T4OtY-j59mBb31Nu3-tmi0W6e0cRJnn_dzFYc5Tp96ajzb0T_XiF9-4qmeXf7A_L_kGp-t8WA</recordid><startdate>20160707</startdate><enddate>20160707</enddate><creator>Vasundhara</creator><creator>Panda, G</creator><creator>Puhan, N.B</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160707</creationdate><title>On new efficient μ-law-based method for feedback compensation in hearing aids</title><author>Vasundhara ; Panda, G ; Puhan, N.B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3436-b4e7cc4c7256e2e7ba0bc0cb754e4e72e9c6030a35da10aca2b7bd1c14da84213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>adaptive feedback canceller</topic><topic>AFC</topic><topic>affine‐projection‐like algorithm</topic><topic>Biomedical technology</topic><topic>feedback</topic><topic>feedback compensation</topic><topic>filtering theory</topic><topic>gain factors</topic><topic>hearing aids</topic><topic>improved proportionate APL</topic><topic>IPAPL</topic><topic>learning (artificial intelligence)</topic><topic>learning algorithms</topic><topic>medical signal processing</topic><topic>memorised IPAPL</topic><topic>MIPAPL</topic><topic>MMIPAPL</topic><topic>μ‐law MIPAPL</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasundhara</creatorcontrib><creatorcontrib>Panda, G</creatorcontrib><creatorcontrib>Puhan, N.B</creatorcontrib><collection>CrossRef</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vasundhara</au><au>Panda, G</au><au>Puhan, N.B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On new efficient μ-law-based method for feedback compensation in hearing aids</atitle><jtitle>Electronics letters</jtitle><date>2016-07-07</date><risdate>2016</risdate><volume>52</volume><issue>14</issue><spage>1200</spage><epage>1202</epage><pages>1200-1202</pages><issn>0013-5194</issn><issn>1350-911X</issn><eissn>1350-911X</eissn><abstract>The affine-projection-like (APL) algorithm is reported to achieve lower computations than affine-projection algorithm (APA) without compromising the steady-state performance. Further, the performance accuracy of the adaptive feedback canceller (AFC) in hearing aids is enhanced using an improved proportionate APL (IPAPL) algorithm. Two new learning algorithms are proposed for AFC, which apply the memory of previous gain factors and μ-law proportionate technique to the IPAPL, termed as memorised IPAPL (MIPAPL) and μ-law MIPAPL (MMIPAPL), respectively. In addition, a segmented approach is also suggested which offers computational advantage over MMIPAPL. The results obtained from simulation-based experiments demonstrate that the proposed methods achieve faster convergence rate than the existing methods.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/el.2016.0483</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0013-5194
ispartof Electronics letters, 2016-07, Vol.52 (14), p.1200-1202
issn 0013-5194
1350-911X
1350-911X
language eng
recordid cdi_iet_journals_10_1049_el_2016_0483
source Wiley Online Library Open Access
subjects adaptive feedback canceller
AFC
affine‐projection‐like algorithm
Biomedical technology
feedback
feedback compensation
filtering theory
gain factors
hearing aids
improved proportionate APL
IPAPL
learning (artificial intelligence)
learning algorithms
medical signal processing
memorised IPAPL
MIPAPL
MMIPAPL
μ‐law MIPAPL
title On new efficient μ-law-based method for feedback compensation in hearing aids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A19%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20new%20efficient%20%CE%BC-law-based%20method%20for%20feedback%20compensation%20in%20hearing%20aids&rft.jtitle=Electronics%20letters&rft.au=Vasundhara&rft.date=2016-07-07&rft.volume=52&rft.issue=14&rft.spage=1200&rft.epage=1202&rft.pages=1200-1202&rft.issn=0013-5194&rft.eissn=1350-911X&rft_id=info:doi/10.1049/el.2016.0483&rft_dat=%3Cwiley_24P%3EELL2BF03966%3C/wiley_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true