Extraction of similar terms for unsupervised utterance categorisation in technical support automated agents

In this paper we address the unsupervised automated categorisation of spoken language utterances within the context of a technical support automated agent. In particular, we analyse the role of feature extraction in the design of more accurate classifiers. The utterance classification is performed b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Albalate, A, Dimitrov, D
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208
container_issue
container_start_page 205
container_title
container_volume
creator Albalate, A
Dimitrov, D
description In this paper we address the unsupervised automated categorisation of spoken language utterances within the context of a technical support automated agent. In particular, we analyse the role of feature extraction in the design of more accurate classifiers. The utterance classification is performed based on a K-means clustering algorithm. We then propose a feature extraction method consisting in the automatic identification of semantically equivalent terms. Finally, the performance of the resulting categoriser, in terms of accuracy, is experimentally compared against the basic K-means without feature extraction.
doi_str_mv 10.1049/cp:20070369
format Conference Proceeding
fullrecord <record><control><sourceid>iet</sourceid><recordid>TN_cdi_iet_conferences_10_1049_cp_20070369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1049_cp_20070369</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-b1f8e0653c7d1b2dd6c14793fcd713ab1446b3b36090fb2d8728ee89cd07f31a3</originalsourceid><addsrcrecordid>eNo1kE1LAzEYhAMiKLUn_0DOQvV9N9sk602KX1Dwouclm7yp0TZZkqz4812_TnOYeYZhGDtHuERouys7XjcACoTsjtiyUxq0FC3qtWhO2LKUNwBAJWWD8pS9337WbGwNKfLkeQmHsDeZV8qHwn3KfIplGil_hEKOT3U2TLTEram0SzkU84OGOCP2NQZr9nwGxpQrN1NNhznnuNlRrOWMHXuzL7T80wV7ubt93jystk_3j5ub7SogrOtqQK8J5FpY5XBonJMWW9UJb51CYQZsWzmIQUjowM--Vo0m0p11oLxAIxbs4rc3UO1tip4yzZtLj9B_P9Tbsf9_SHwBt8BdjQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Extraction of similar terms for unsupervised utterance categorisation in technical support automated agents</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Albalate, A ; Dimitrov, D</creator><creatorcontrib>Albalate, A ; Dimitrov, D</creatorcontrib><description>In this paper we address the unsupervised automated categorisation of spoken language utterances within the context of a technical support automated agent. In particular, we analyse the role of feature extraction in the design of more accurate classifiers. The utterance classification is performed based on a K-means clustering algorithm. We then propose a feature extraction method consisting in the automatic identification of semantically equivalent terms. Finally, the performance of the resulting categoriser, in terms of accuracy, is experimentally compared against the basic K-means without feature extraction.</description><identifier>ISBN: 9780863418532</identifier><identifier>ISBN: 0863418538</identifier><identifier>DOI: 10.1049/cp:20070369</identifier><language>eng</language><publisher>Stevenage: IET</publisher><subject>Knowledge engineering techniques ; Natural language processing ; Pattern recognition ; Speech and audio signal processing ; Speech processing techniques</subject><ispartof>3rd IET International Conference on Intelligent Environments (IE 07), 2007, p.205-208</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,777,781,786,787,4036,4037,27906</link.rule.ids></links><search><creatorcontrib>Albalate, A</creatorcontrib><creatorcontrib>Dimitrov, D</creatorcontrib><title>Extraction of similar terms for unsupervised utterance categorisation in technical support automated agents</title><title>3rd IET International Conference on Intelligent Environments (IE 07)</title><description>In this paper we address the unsupervised automated categorisation of spoken language utterances within the context of a technical support automated agent. In particular, we analyse the role of feature extraction in the design of more accurate classifiers. The utterance classification is performed based on a K-means clustering algorithm. We then propose a feature extraction method consisting in the automatic identification of semantically equivalent terms. Finally, the performance of the resulting categoriser, in terms of accuracy, is experimentally compared against the basic K-means without feature extraction.</description><subject>Knowledge engineering techniques</subject><subject>Natural language processing</subject><subject>Pattern recognition</subject><subject>Speech and audio signal processing</subject><subject>Speech processing techniques</subject><isbn>9780863418532</isbn><isbn>0863418538</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo1kE1LAzEYhAMiKLUn_0DOQvV9N9sk602KX1Dwouclm7yp0TZZkqz4812_TnOYeYZhGDtHuERouys7XjcACoTsjtiyUxq0FC3qtWhO2LKUNwBAJWWD8pS9337WbGwNKfLkeQmHsDeZV8qHwn3KfIplGil_hEKOT3U2TLTEram0SzkU84OGOCP2NQZr9nwGxpQrN1NNhznnuNlRrOWMHXuzL7T80wV7ubt93jystk_3j5ub7SogrOtqQK8J5FpY5XBonJMWW9UJb51CYQZsWzmIQUjowM--Vo0m0p11oLxAIxbs4rc3UO1tip4yzZtLj9B_P9Tbsf9_SHwBt8BdjQ</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Albalate, A</creator><creator>Dimitrov, D</creator><general>IET</general><scope>8ET</scope></search><sort><creationdate>2007</creationdate><title>Extraction of similar terms for unsupervised utterance categorisation in technical support automated agents</title><author>Albalate, A ; Dimitrov, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-b1f8e0653c7d1b2dd6c14793fcd713ab1446b3b36090fb2d8728ee89cd07f31a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Knowledge engineering techniques</topic><topic>Natural language processing</topic><topic>Pattern recognition</topic><topic>Speech and audio signal processing</topic><topic>Speech processing techniques</topic><toplevel>online_resources</toplevel><creatorcontrib>Albalate, A</creatorcontrib><creatorcontrib>Dimitrov, D</creatorcontrib><collection>IET Conference Publications by volume</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albalate, A</au><au>Dimitrov, D</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Extraction of similar terms for unsupervised utterance categorisation in technical support automated agents</atitle><btitle>3rd IET International Conference on Intelligent Environments (IE 07)</btitle><date>2007</date><risdate>2007</risdate><spage>205</spage><epage>208</epage><pages>205-208</pages><isbn>9780863418532</isbn><isbn>0863418538</isbn><abstract>In this paper we address the unsupervised automated categorisation of spoken language utterances within the context of a technical support automated agent. In particular, we analyse the role of feature extraction in the design of more accurate classifiers. The utterance classification is performed based on a K-means clustering algorithm. We then propose a feature extraction method consisting in the automatic identification of semantically equivalent terms. Finally, the performance of the resulting categoriser, in terms of accuracy, is experimentally compared against the basic K-means without feature extraction.</abstract><cop>Stevenage</cop><pub>IET</pub><doi>10.1049/cp:20070369</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISBN: 9780863418532
ispartof 3rd IET International Conference on Intelligent Environments (IE 07), 2007, p.205-208
issn
language eng
recordid cdi_iet_conferences_10_1049_cp_20070369
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Knowledge engineering techniques
Natural language processing
Pattern recognition
Speech and audio signal processing
Speech processing techniques
title Extraction of similar terms for unsupervised utterance categorisation in technical support automated agents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iet&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Extraction%20of%20similar%20terms%20for%20unsupervised%20utterance%20categorisation%20in%20technical%20support%20automated%20agents&rft.btitle=3rd%20IET%20International%20Conference%20on%20Intelligent%20Environments%20(IE%2007)&rft.au=Albalate,%20A&rft.date=2007&rft.spage=205&rft.epage=208&rft.pages=205-208&rft.isbn=9780863418532&rft.isbn_list=0863418538&rft_id=info:doi/10.1049/cp:20070369&rft_dat=%3Ciet%3E10_1049_cp_20070369%3C/iet%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true