Extraction of similar terms for unsupervised utterance categorisation in technical support automated agents
In this paper we address the unsupervised automated categorisation of spoken language utterances within the context of a technical support automated agent. In particular, we analyse the role of feature extraction in the design of more accurate classifiers. The utterance classification is performed b...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 208 |
---|---|
container_issue | |
container_start_page | 205 |
container_title | |
container_volume | |
creator | Albalate, A Dimitrov, D |
description | In this paper we address the unsupervised automated categorisation of spoken language utterances within the context of a technical support automated agent. In particular, we analyse the role of feature extraction in the design of more accurate classifiers. The utterance classification is performed based on a K-means clustering algorithm. We then propose a feature extraction method consisting in the automatic identification of semantically equivalent terms. Finally, the performance of the resulting categoriser, in terms of accuracy, is experimentally compared against the basic K-means without feature extraction. |
doi_str_mv | 10.1049/cp:20070369 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>iet</sourceid><recordid>TN_cdi_iet_conferences_10_1049_cp_20070369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1049_cp_20070369</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-b1f8e0653c7d1b2dd6c14793fcd713ab1446b3b36090fb2d8728ee89cd07f31a3</originalsourceid><addsrcrecordid>eNo1kE1LAzEYhAMiKLUn_0DOQvV9N9sk602KX1Dwouclm7yp0TZZkqz4812_TnOYeYZhGDtHuERouys7XjcACoTsjtiyUxq0FC3qtWhO2LKUNwBAJWWD8pS9337WbGwNKfLkeQmHsDeZV8qHwn3KfIplGil_hEKOT3U2TLTEram0SzkU84OGOCP2NQZr9nwGxpQrN1NNhznnuNlRrOWMHXuzL7T80wV7ubt93jystk_3j5ub7SogrOtqQK8J5FpY5XBonJMWW9UJb51CYQZsWzmIQUjowM--Vo0m0p11oLxAIxbs4rc3UO1tip4yzZtLj9B_P9Tbsf9_SHwBt8BdjQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Extraction of similar terms for unsupervised utterance categorisation in technical support automated agents</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Albalate, A ; Dimitrov, D</creator><creatorcontrib>Albalate, A ; Dimitrov, D</creatorcontrib><description>In this paper we address the unsupervised automated categorisation of spoken language utterances within the context of a technical support automated agent. In particular, we analyse the role of feature extraction in the design of more accurate classifiers. The utterance classification is performed based on a K-means clustering algorithm. We then propose a feature extraction method consisting in the automatic identification of semantically equivalent terms. Finally, the performance of the resulting categoriser, in terms of accuracy, is experimentally compared against the basic K-means without feature extraction.</description><identifier>ISBN: 9780863418532</identifier><identifier>ISBN: 0863418538</identifier><identifier>DOI: 10.1049/cp:20070369</identifier><language>eng</language><publisher>Stevenage: IET</publisher><subject>Knowledge engineering techniques ; Natural language processing ; Pattern recognition ; Speech and audio signal processing ; Speech processing techniques</subject><ispartof>3rd IET International Conference on Intelligent Environments (IE 07), 2007, p.205-208</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,777,781,786,787,4036,4037,27906</link.rule.ids></links><search><creatorcontrib>Albalate, A</creatorcontrib><creatorcontrib>Dimitrov, D</creatorcontrib><title>Extraction of similar terms for unsupervised utterance categorisation in technical support automated agents</title><title>3rd IET International Conference on Intelligent Environments (IE 07)</title><description>In this paper we address the unsupervised automated categorisation of spoken language utterances within the context of a technical support automated agent. In particular, we analyse the role of feature extraction in the design of more accurate classifiers. The utterance classification is performed based on a K-means clustering algorithm. We then propose a feature extraction method consisting in the automatic identification of semantically equivalent terms. Finally, the performance of the resulting categoriser, in terms of accuracy, is experimentally compared against the basic K-means without feature extraction.</description><subject>Knowledge engineering techniques</subject><subject>Natural language processing</subject><subject>Pattern recognition</subject><subject>Speech and audio signal processing</subject><subject>Speech processing techniques</subject><isbn>9780863418532</isbn><isbn>0863418538</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo1kE1LAzEYhAMiKLUn_0DOQvV9N9sk602KX1Dwouclm7yp0TZZkqz4812_TnOYeYZhGDtHuERouys7XjcACoTsjtiyUxq0FC3qtWhO2LKUNwBAJWWD8pS9337WbGwNKfLkeQmHsDeZV8qHwn3KfIplGil_hEKOT3U2TLTEram0SzkU84OGOCP2NQZr9nwGxpQrN1NNhznnuNlRrOWMHXuzL7T80wV7ubt93jystk_3j5ub7SogrOtqQK8J5FpY5XBonJMWW9UJb51CYQZsWzmIQUjowM--Vo0m0p11oLxAIxbs4rc3UO1tip4yzZtLj9B_P9Tbsf9_SHwBt8BdjQ</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Albalate, A</creator><creator>Dimitrov, D</creator><general>IET</general><scope>8ET</scope></search><sort><creationdate>2007</creationdate><title>Extraction of similar terms for unsupervised utterance categorisation in technical support automated agents</title><author>Albalate, A ; Dimitrov, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-b1f8e0653c7d1b2dd6c14793fcd713ab1446b3b36090fb2d8728ee89cd07f31a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Knowledge engineering techniques</topic><topic>Natural language processing</topic><topic>Pattern recognition</topic><topic>Speech and audio signal processing</topic><topic>Speech processing techniques</topic><toplevel>online_resources</toplevel><creatorcontrib>Albalate, A</creatorcontrib><creatorcontrib>Dimitrov, D</creatorcontrib><collection>IET Conference Publications by volume</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albalate, A</au><au>Dimitrov, D</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Extraction of similar terms for unsupervised utterance categorisation in technical support automated agents</atitle><btitle>3rd IET International Conference on Intelligent Environments (IE 07)</btitle><date>2007</date><risdate>2007</risdate><spage>205</spage><epage>208</epage><pages>205-208</pages><isbn>9780863418532</isbn><isbn>0863418538</isbn><abstract>In this paper we address the unsupervised automated categorisation of spoken language utterances within the context of a technical support automated agent. In particular, we analyse the role of feature extraction in the design of more accurate classifiers. The utterance classification is performed based on a K-means clustering algorithm. We then propose a feature extraction method consisting in the automatic identification of semantically equivalent terms. Finally, the performance of the resulting categoriser, in terms of accuracy, is experimentally compared against the basic K-means without feature extraction.</abstract><cop>Stevenage</cop><pub>IET</pub><doi>10.1049/cp:20070369</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISBN: 9780863418532 |
ispartof | 3rd IET International Conference on Intelligent Environments (IE 07), 2007, p.205-208 |
issn | |
language | eng |
recordid | cdi_iet_conferences_10_1049_cp_20070369 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Knowledge engineering techniques Natural language processing Pattern recognition Speech and audio signal processing Speech processing techniques |
title | Extraction of similar terms for unsupervised utterance categorisation in technical support automated agents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iet&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Extraction%20of%20similar%20terms%20for%20unsupervised%20utterance%20categorisation%20in%20technical%20support%20automated%20agents&rft.btitle=3rd%20IET%20International%20Conference%20on%20Intelligent%20Environments%20(IE%2007)&rft.au=Albalate,%20A&rft.date=2007&rft.spage=205&rft.epage=208&rft.pages=205-208&rft.isbn=9780863418532&rft.isbn_list=0863418538&rft_id=info:doi/10.1049/cp:20070369&rft_dat=%3Ciet%3E10_1049_cp_20070369%3C/iet%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |