A multichannel algorithm for image segmentation with iterative feedback

We present a segmentation algorithm for multichannel image analysis. It is based on a novel method that significantly improves the segmentation performance with respect to both homogeneity of the segmented regions and precision of the segmented region boundaries. The algorithm yields excellent resul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pichler, O, Teuner, A, Hosticka, B.J
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 513
container_issue
container_start_page 510
container_title
container_volume
creator Pichler, O
Teuner, A
Hosticka, B.J
description We present a segmentation algorithm for multichannel image analysis. It is based on a novel method that significantly improves the segmentation performance with respect to both homogeneity of the segmented regions and precision of the segmented region boundaries. The algorithm yields excellent results in comparison with other segmentation algorithms that are based on feature space clustering followed by minimum distance classification, as is shown in some segmentation examples. The main idea of the algorithm is the iterative feedback of the knowledge about the analysed image that has been obtained from preceding segmentation results. It needs just a stack of feature images and the indication of the number of required classes for input data. Therefore, it has a broad field of possible applications, especially in multichannel image analysis.
doi_str_mv 10.1049/cp:19950711
format Conference Proceeding
fullrecord <record><control><sourceid>iet</sourceid><recordid>TN_cdi_iet_conferences_10_1049_cp_19950711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1049_cp_19950711</sourcerecordid><originalsourceid>FETCH-iet_conferences_10_1049_cp_199507113</originalsourceid><addsrcrecordid>eNqVjksKwjAURQMi-OvIDbyxoCZtU1tnIn4W4DzE-NpG20SSqNu3gi7AO7lczh0cQqaMLhhNi6W6r1lRcLpirEdGNOdxkWVpnAxI5P2VduE8T2k6JIcNtI8maFVLY7AB2VTW6VC3UFoHupUVgseqRRNk0NbAq4OgA7puPhFKxMtZqtuE9EvZeIy-PSaz_e60Pc41BqGsKdGhUegFo-KjKNRd_BSTv85vaTND9g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A multichannel algorithm for image segmentation with iterative feedback</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pichler, O ; Teuner, A ; Hosticka, B.J</creator><creatorcontrib>Pichler, O ; Teuner, A ; Hosticka, B.J</creatorcontrib><description>We present a segmentation algorithm for multichannel image analysis. It is based on a novel method that significantly improves the segmentation performance with respect to both homogeneity of the segmented regions and precision of the segmented region boundaries. The algorithm yields excellent results in comparison with other segmentation algorithms that are based on feature space clustering followed by minimum distance classification, as is shown in some segmentation examples. The main idea of the algorithm is the iterative feedback of the knowledge about the analysed image that has been obtained from preceding segmentation results. It needs just a stack of feature images and the indication of the number of required classes for input data. Therefore, it has a broad field of possible applications, especially in multichannel image analysis.</description><identifier>ISBN: 0852966423</identifier><identifier>ISBN: 9780852966426</identifier><identifier>DOI: 10.1049/cp:19950711</identifier><language>eng</language><publisher>London: IEE</publisher><subject>Interpolation and function approximation (numerical analysis) ; Optical information, image and video signal processing ; Pattern recognition</subject><ispartof>Fifth International Conference on Image Processing and its Applications, 1995, p.510-513</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,784,789,790,4050,4051,27925</link.rule.ids></links><search><creatorcontrib>Pichler, O</creatorcontrib><creatorcontrib>Teuner, A</creatorcontrib><creatorcontrib>Hosticka, B.J</creatorcontrib><title>A multichannel algorithm for image segmentation with iterative feedback</title><title>Fifth International Conference on Image Processing and its Applications</title><description>We present a segmentation algorithm for multichannel image analysis. It is based on a novel method that significantly improves the segmentation performance with respect to both homogeneity of the segmented regions and precision of the segmented region boundaries. The algorithm yields excellent results in comparison with other segmentation algorithms that are based on feature space clustering followed by minimum distance classification, as is shown in some segmentation examples. The main idea of the algorithm is the iterative feedback of the knowledge about the analysed image that has been obtained from preceding segmentation results. It needs just a stack of feature images and the indication of the number of required classes for input data. Therefore, it has a broad field of possible applications, especially in multichannel image analysis.</description><subject>Interpolation and function approximation (numerical analysis)</subject><subject>Optical information, image and video signal processing</subject><subject>Pattern recognition</subject><isbn>0852966423</isbn><isbn>9780852966426</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNqVjksKwjAURQMi-OvIDbyxoCZtU1tnIn4W4DzE-NpG20SSqNu3gi7AO7lczh0cQqaMLhhNi6W6r1lRcLpirEdGNOdxkWVpnAxI5P2VduE8T2k6JIcNtI8maFVLY7AB2VTW6VC3UFoHupUVgseqRRNk0NbAq4OgA7puPhFKxMtZqtuE9EvZeIy-PSaz_e60Pc41BqGsKdGhUegFo-KjKNRd_BSTv85vaTND9g</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Pichler, O</creator><creator>Teuner, A</creator><creator>Hosticka, B.J</creator><general>IEE</general><scope>8ET</scope></search><sort><creationdate>1995</creationdate><title>A multichannel algorithm for image segmentation with iterative feedback</title><author>Pichler, O ; Teuner, A ; Hosticka, B.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-iet_conferences_10_1049_cp_199507113</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Interpolation and function approximation (numerical analysis)</topic><topic>Optical information, image and video signal processing</topic><topic>Pattern recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Pichler, O</creatorcontrib><creatorcontrib>Teuner, A</creatorcontrib><creatorcontrib>Hosticka, B.J</creatorcontrib><collection>IET Conference Publications by volume</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pichler, O</au><au>Teuner, A</au><au>Hosticka, B.J</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A multichannel algorithm for image segmentation with iterative feedback</atitle><btitle>Fifth International Conference on Image Processing and its Applications</btitle><date>1995</date><risdate>1995</risdate><spage>510</spage><epage>513</epage><pages>510-513</pages><isbn>0852966423</isbn><isbn>9780852966426</isbn><abstract>We present a segmentation algorithm for multichannel image analysis. It is based on a novel method that significantly improves the segmentation performance with respect to both homogeneity of the segmented regions and precision of the segmented region boundaries. The algorithm yields excellent results in comparison with other segmentation algorithms that are based on feature space clustering followed by minimum distance classification, as is shown in some segmentation examples. The main idea of the algorithm is the iterative feedback of the knowledge about the analysed image that has been obtained from preceding segmentation results. It needs just a stack of feature images and the indication of the number of required classes for input data. Therefore, it has a broad field of possible applications, especially in multichannel image analysis.</abstract><cop>London</cop><pub>IEE</pub><doi>10.1049/cp:19950711</doi></addata></record>
fulltext fulltext
identifier ISBN: 0852966423
ispartof Fifth International Conference on Image Processing and its Applications, 1995, p.510-513
issn
language eng
recordid cdi_iet_conferences_10_1049_cp_19950711
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Interpolation and function approximation (numerical analysis)
Optical information, image and video signal processing
Pattern recognition
title A multichannel algorithm for image segmentation with iterative feedback
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A40%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iet&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20multichannel%20algorithm%20for%20image%20segmentation%20with%20iterative%20feedback&rft.btitle=Fifth%20International%20Conference%20on%20Image%20Processing%20and%20its%20Applications&rft.au=Pichler,%20O&rft.date=1995&rft.spage=510&rft.epage=513&rft.pages=510-513&rft.isbn=0852966423&rft.isbn_list=9780852966426&rft_id=info:doi/10.1049/cp:19950711&rft_dat=%3Ciet%3E10_1049_cp_19950711%3C/iet%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true