A Novel Scenarios Engineering Methodology for Foundation Models in Metaverse

Foundation models are used to train a broad system of general data to build adaptations to new bottlenecks. Typically, they contain hundreds of billions of hyperparameters that have been trained with hundreds of gigabytes of data. However, this type of black-box vulnerability places foundation model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2023-04, Vol.53 (4), p.2148-2159
Hauptverfasser: Li, Xuan, Tian, Yonglin, Ye, Peijun, Duan, Haibin, Wang, Fei-Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2159
container_issue 4
container_start_page 2148
container_title IEEE transactions on systems, man, and cybernetics. Systems
container_volume 53
creator Li, Xuan
Tian, Yonglin
Ye, Peijun
Duan, Haibin
Wang, Fei-Yue
description Foundation models are used to train a broad system of general data to build adaptations to new bottlenecks. Typically, they contain hundreds of billions of hyperparameters that have been trained with hundreds of gigabytes of data. However, this type of black-box vulnerability places foundation models at risk of data poisoning attacks that are designed to pass on misinformation or purposely introduce machine bias. Moreover, ordinary researchers have not been able to completely participate due to the rise in deployment standards. This study introduces the theoretical framework of scenarios engineering (SE) for building accessible and reliable foundation models in metaverse, namely, "SE-enabled foundation models in metaverse." Particularly, the research framework comprises a six-layer architecture (infrastructure layer, operation layer, knowledge layer, intelligence layer, management layer, and interaction layer), which can provide controllability, trustworthiness, and interactivity for the foundation models in metaverse. This creates closed-loop, virtual-real, and human-machine environments that provides the best indices and goals for the foundation models, which allows us to fully validate and calibrate the corresponding models. Then, examples of use cases from the automotive industry are listed to provide transparency on the possible use and benefits of our approach. Finally, the open research topics of related frameworks are discussed.
doi_str_mv 10.1109/TSMC.2022.3228594
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9999152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9999152</ieee_id><sourcerecordid>2787708443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-c0143ac79b37bd0caffb42c53626ab20a5741b28b21d7981cc75db015b3a4da83</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWLQPIF4Cnrcmk90keyylVaHVQ-s5JNls3bImNdkW-vbu0tK5_HP4_hn4EHqiZEIpKV8369VsAgRgwgBkUeY3aASUywyAwe11p_wejVPaEUIoSM4IH6HlFH-Go2vx2jqvYxMSnvtt452Ljd_ilet-QhXasD3hOkS8CAdf6a4JHq9C5dqEGz9A-uhico_ortZtcuNLPqDvxXwze8-WX28fs-kys4zxLrOE5kxbURomTEWsrmuTgy0YB64NEF2InBqQBmglSkmtFUVlCC0M03mlJXtAL-e7-xj-Di51ahcO0fcvFQgpBJF5znqKnikbQ0rR1Wofm18dT4oSNXhTgzc1eFMXb33n-dxpnHNXvuyHFsD-AQPJaLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787708443</pqid></control><display><type>article</type><title>A Novel Scenarios Engineering Methodology for Foundation Models in Metaverse</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Xuan ; Tian, Yonglin ; Ye, Peijun ; Duan, Haibin ; Wang, Fei-Yue</creator><creatorcontrib>Li, Xuan ; Tian, Yonglin ; Ye, Peijun ; Duan, Haibin ; Wang, Fei-Yue</creatorcontrib><description>Foundation models are used to train a broad system of general data to build adaptations to new bottlenecks. Typically, they contain hundreds of billions of hyperparameters that have been trained with hundreds of gigabytes of data. However, this type of black-box vulnerability places foundation models at risk of data poisoning attacks that are designed to pass on misinformation or purposely introduce machine bias. Moreover, ordinary researchers have not been able to completely participate due to the rise in deployment standards. This study introduces the theoretical framework of scenarios engineering (SE) for building accessible and reliable foundation models in metaverse, namely, "SE-enabled foundation models in metaverse." Particularly, the research framework comprises a six-layer architecture (infrastructure layer, operation layer, knowledge layer, intelligence layer, management layer, and interaction layer), which can provide controllability, trustworthiness, and interactivity for the foundation models in metaverse. This creates closed-loop, virtual-real, and human-machine environments that provides the best indices and goals for the foundation models, which allows us to fully validate and calibrate the corresponding models. Then, examples of use cases from the automotive industry are listed to provide transparency on the possible use and benefits of our approach. Finally, the open research topics of related frameworks are discussed.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2022.3228594</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Automobile industry ; Biological system modeling ; Closed loops ; Computational modeling ; Data models ; Foundation models ; Industries ; knowledge automation ; management ; Metaverse ; parallel intelligence ; scenarios engineering (SE) ; Task analysis</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2023-04, Vol.53 (4), p.2148-2159</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-c0143ac79b37bd0caffb42c53626ab20a5741b28b21d7981cc75db015b3a4da83</citedby><cites>FETCH-LOGICAL-c336t-c0143ac79b37bd0caffb42c53626ab20a5741b28b21d7981cc75db015b3a4da83</cites><orcidid>0000-0001-9185-3989 ; 0000-0003-3999-8923 ; 0000-0002-4926-3202 ; 0000-0003-1911-5791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9999152$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids></links><search><creatorcontrib>Li, Xuan</creatorcontrib><creatorcontrib>Tian, Yonglin</creatorcontrib><creatorcontrib>Ye, Peijun</creatorcontrib><creatorcontrib>Duan, Haibin</creatorcontrib><creatorcontrib>Wang, Fei-Yue</creatorcontrib><title>A Novel Scenarios Engineering Methodology for Foundation Models in Metaverse</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>Foundation models are used to train a broad system of general data to build adaptations to new bottlenecks. Typically, they contain hundreds of billions of hyperparameters that have been trained with hundreds of gigabytes of data. However, this type of black-box vulnerability places foundation models at risk of data poisoning attacks that are designed to pass on misinformation or purposely introduce machine bias. Moreover, ordinary researchers have not been able to completely participate due to the rise in deployment standards. This study introduces the theoretical framework of scenarios engineering (SE) for building accessible and reliable foundation models in metaverse, namely, "SE-enabled foundation models in metaverse." Particularly, the research framework comprises a six-layer architecture (infrastructure layer, operation layer, knowledge layer, intelligence layer, management layer, and interaction layer), which can provide controllability, trustworthiness, and interactivity for the foundation models in metaverse. This creates closed-loop, virtual-real, and human-machine environments that provides the best indices and goals for the foundation models, which allows us to fully validate and calibrate the corresponding models. Then, examples of use cases from the automotive industry are listed to provide transparency on the possible use and benefits of our approach. Finally, the open research topics of related frameworks are discussed.</description><subject>Adaptation models</subject><subject>Automobile industry</subject><subject>Biological system modeling</subject><subject>Closed loops</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Foundation models</subject><subject>Industries</subject><subject>knowledge automation</subject><subject>management</subject><subject>Metaverse</subject><subject>parallel intelligence</subject><subject>scenarios engineering (SE)</subject><subject>Task analysis</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEQhoMoWLQPIF4Cnrcmk90keyylVaHVQ-s5JNls3bImNdkW-vbu0tK5_HP4_hn4EHqiZEIpKV8369VsAgRgwgBkUeY3aASUywyAwe11p_wejVPaEUIoSM4IH6HlFH-Go2vx2jqvYxMSnvtt452Ljd_ilet-QhXasD3hOkS8CAdf6a4JHq9C5dqEGz9A-uhico_ortZtcuNLPqDvxXwze8-WX28fs-kys4zxLrOE5kxbURomTEWsrmuTgy0YB64NEF2InBqQBmglSkmtFUVlCC0M03mlJXtAL-e7-xj-Di51ahcO0fcvFQgpBJF5znqKnikbQ0rR1Wofm18dT4oSNXhTgzc1eFMXb33n-dxpnHNXvuyHFsD-AQPJaLs</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Li, Xuan</creator><creator>Tian, Yonglin</creator><creator>Ye, Peijun</creator><creator>Duan, Haibin</creator><creator>Wang, Fei-Yue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9185-3989</orcidid><orcidid>https://orcid.org/0000-0003-3999-8923</orcidid><orcidid>https://orcid.org/0000-0002-4926-3202</orcidid><orcidid>https://orcid.org/0000-0003-1911-5791</orcidid></search><sort><creationdate>20230401</creationdate><title>A Novel Scenarios Engineering Methodology for Foundation Models in Metaverse</title><author>Li, Xuan ; Tian, Yonglin ; Ye, Peijun ; Duan, Haibin ; Wang, Fei-Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-c0143ac79b37bd0caffb42c53626ab20a5741b28b21d7981cc75db015b3a4da83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation models</topic><topic>Automobile industry</topic><topic>Biological system modeling</topic><topic>Closed loops</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Foundation models</topic><topic>Industries</topic><topic>knowledge automation</topic><topic>management</topic><topic>Metaverse</topic><topic>parallel intelligence</topic><topic>scenarios engineering (SE)</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xuan</creatorcontrib><creatorcontrib>Tian, Yonglin</creatorcontrib><creatorcontrib>Ye, Peijun</creatorcontrib><creatorcontrib>Duan, Haibin</creatorcontrib><creatorcontrib>Wang, Fei-Yue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xuan</au><au>Tian, Yonglin</au><au>Ye, Peijun</au><au>Duan, Haibin</au><au>Wang, Fei-Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Scenarios Engineering Methodology for Foundation Models in Metaverse</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>53</volume><issue>4</issue><spage>2148</spage><epage>2159</epage><pages>2148-2159</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>Foundation models are used to train a broad system of general data to build adaptations to new bottlenecks. Typically, they contain hundreds of billions of hyperparameters that have been trained with hundreds of gigabytes of data. However, this type of black-box vulnerability places foundation models at risk of data poisoning attacks that are designed to pass on misinformation or purposely introduce machine bias. Moreover, ordinary researchers have not been able to completely participate due to the rise in deployment standards. This study introduces the theoretical framework of scenarios engineering (SE) for building accessible and reliable foundation models in metaverse, namely, "SE-enabled foundation models in metaverse." Particularly, the research framework comprises a six-layer architecture (infrastructure layer, operation layer, knowledge layer, intelligence layer, management layer, and interaction layer), which can provide controllability, trustworthiness, and interactivity for the foundation models in metaverse. This creates closed-loop, virtual-real, and human-machine environments that provides the best indices and goals for the foundation models, which allows us to fully validate and calibrate the corresponding models. Then, examples of use cases from the automotive industry are listed to provide transparency on the possible use and benefits of our approach. Finally, the open research topics of related frameworks are discussed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2022.3228594</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9185-3989</orcidid><orcidid>https://orcid.org/0000-0003-3999-8923</orcidid><orcidid>https://orcid.org/0000-0002-4926-3202</orcidid><orcidid>https://orcid.org/0000-0003-1911-5791</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-2216
ispartof IEEE transactions on systems, man, and cybernetics. Systems, 2023-04, Vol.53 (4), p.2148-2159
issn 2168-2216
2168-2232
language eng
recordid cdi_ieee_primary_9999152
source IEEE Electronic Library (IEL)
subjects Adaptation models
Automobile industry
Biological system modeling
Closed loops
Computational modeling
Data models
Foundation models
Industries
knowledge automation
management
Metaverse
parallel intelligence
scenarios engineering (SE)
Task analysis
title A Novel Scenarios Engineering Methodology for Foundation Models in Metaverse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Scenarios%20Engineering%20Methodology%20for%20Foundation%20Models%20in%20Metaverse&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Li,%20Xuan&rft.date=2023-04-01&rft.volume=53&rft.issue=4&rft.spage=2148&rft.epage=2159&rft.pages=2148-2159&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2022.3228594&rft_dat=%3Cproquest_ieee_%3E2787708443%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787708443&rft_id=info:pmid/&rft_ieee_id=9999152&rfr_iscdi=true