A Novel Scenarios Engineering Methodology for Foundation Models in Metaverse
Foundation models are used to train a broad system of general data to build adaptations to new bottlenecks. Typically, they contain hundreds of billions of hyperparameters that have been trained with hundreds of gigabytes of data. However, this type of black-box vulnerability places foundation model...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2023-04, Vol.53 (4), p.2148-2159 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2159 |
---|---|
container_issue | 4 |
container_start_page | 2148 |
container_title | IEEE transactions on systems, man, and cybernetics. Systems |
container_volume | 53 |
creator | Li, Xuan Tian, Yonglin Ye, Peijun Duan, Haibin Wang, Fei-Yue |
description | Foundation models are used to train a broad system of general data to build adaptations to new bottlenecks. Typically, they contain hundreds of billions of hyperparameters that have been trained with hundreds of gigabytes of data. However, this type of black-box vulnerability places foundation models at risk of data poisoning attacks that are designed to pass on misinformation or purposely introduce machine bias. Moreover, ordinary researchers have not been able to completely participate due to the rise in deployment standards. This study introduces the theoretical framework of scenarios engineering (SE) for building accessible and reliable foundation models in metaverse, namely, "SE-enabled foundation models in metaverse." Particularly, the research framework comprises a six-layer architecture (infrastructure layer, operation layer, knowledge layer, intelligence layer, management layer, and interaction layer), which can provide controllability, trustworthiness, and interactivity for the foundation models in metaverse. This creates closed-loop, virtual-real, and human-machine environments that provides the best indices and goals for the foundation models, which allows us to fully validate and calibrate the corresponding models. Then, examples of use cases from the automotive industry are listed to provide transparency on the possible use and benefits of our approach. Finally, the open research topics of related frameworks are discussed. |
doi_str_mv | 10.1109/TSMC.2022.3228594 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9999152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9999152</ieee_id><sourcerecordid>2787708443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-c0143ac79b37bd0caffb42c53626ab20a5741b28b21d7981cc75db015b3a4da83</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWLQPIF4Cnrcmk90keyylVaHVQ-s5JNls3bImNdkW-vbu0tK5_HP4_hn4EHqiZEIpKV8369VsAgRgwgBkUeY3aASUywyAwe11p_wejVPaEUIoSM4IH6HlFH-Go2vx2jqvYxMSnvtt452Ljd_ilet-QhXasD3hOkS8CAdf6a4JHq9C5dqEGz9A-uhico_ortZtcuNLPqDvxXwze8-WX28fs-kys4zxLrOE5kxbURomTEWsrmuTgy0YB64NEF2InBqQBmglSkmtFUVlCC0M03mlJXtAL-e7-xj-Di51ahcO0fcvFQgpBJF5znqKnikbQ0rR1Wofm18dT4oSNXhTgzc1eFMXb33n-dxpnHNXvuyHFsD-AQPJaLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787708443</pqid></control><display><type>article</type><title>A Novel Scenarios Engineering Methodology for Foundation Models in Metaverse</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Xuan ; Tian, Yonglin ; Ye, Peijun ; Duan, Haibin ; Wang, Fei-Yue</creator><creatorcontrib>Li, Xuan ; Tian, Yonglin ; Ye, Peijun ; Duan, Haibin ; Wang, Fei-Yue</creatorcontrib><description>Foundation models are used to train a broad system of general data to build adaptations to new bottlenecks. Typically, they contain hundreds of billions of hyperparameters that have been trained with hundreds of gigabytes of data. However, this type of black-box vulnerability places foundation models at risk of data poisoning attacks that are designed to pass on misinformation or purposely introduce machine bias. Moreover, ordinary researchers have not been able to completely participate due to the rise in deployment standards. This study introduces the theoretical framework of scenarios engineering (SE) for building accessible and reliable foundation models in metaverse, namely, "SE-enabled foundation models in metaverse." Particularly, the research framework comprises a six-layer architecture (infrastructure layer, operation layer, knowledge layer, intelligence layer, management layer, and interaction layer), which can provide controllability, trustworthiness, and interactivity for the foundation models in metaverse. This creates closed-loop, virtual-real, and human-machine environments that provides the best indices and goals for the foundation models, which allows us to fully validate and calibrate the corresponding models. Then, examples of use cases from the automotive industry are listed to provide transparency on the possible use and benefits of our approach. Finally, the open research topics of related frameworks are discussed.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2022.3228594</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Automobile industry ; Biological system modeling ; Closed loops ; Computational modeling ; Data models ; Foundation models ; Industries ; knowledge automation ; management ; Metaverse ; parallel intelligence ; scenarios engineering (SE) ; Task analysis</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2023-04, Vol.53 (4), p.2148-2159</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-c0143ac79b37bd0caffb42c53626ab20a5741b28b21d7981cc75db015b3a4da83</citedby><cites>FETCH-LOGICAL-c336t-c0143ac79b37bd0caffb42c53626ab20a5741b28b21d7981cc75db015b3a4da83</cites><orcidid>0000-0001-9185-3989 ; 0000-0003-3999-8923 ; 0000-0002-4926-3202 ; 0000-0003-1911-5791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9999152$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids></links><search><creatorcontrib>Li, Xuan</creatorcontrib><creatorcontrib>Tian, Yonglin</creatorcontrib><creatorcontrib>Ye, Peijun</creatorcontrib><creatorcontrib>Duan, Haibin</creatorcontrib><creatorcontrib>Wang, Fei-Yue</creatorcontrib><title>A Novel Scenarios Engineering Methodology for Foundation Models in Metaverse</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>Foundation models are used to train a broad system of general data to build adaptations to new bottlenecks. Typically, they contain hundreds of billions of hyperparameters that have been trained with hundreds of gigabytes of data. However, this type of black-box vulnerability places foundation models at risk of data poisoning attacks that are designed to pass on misinformation or purposely introduce machine bias. Moreover, ordinary researchers have not been able to completely participate due to the rise in deployment standards. This study introduces the theoretical framework of scenarios engineering (SE) for building accessible and reliable foundation models in metaverse, namely, "SE-enabled foundation models in metaverse." Particularly, the research framework comprises a six-layer architecture (infrastructure layer, operation layer, knowledge layer, intelligence layer, management layer, and interaction layer), which can provide controllability, trustworthiness, and interactivity for the foundation models in metaverse. This creates closed-loop, virtual-real, and human-machine environments that provides the best indices and goals for the foundation models, which allows us to fully validate and calibrate the corresponding models. Then, examples of use cases from the automotive industry are listed to provide transparency on the possible use and benefits of our approach. Finally, the open research topics of related frameworks are discussed.</description><subject>Adaptation models</subject><subject>Automobile industry</subject><subject>Biological system modeling</subject><subject>Closed loops</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Foundation models</subject><subject>Industries</subject><subject>knowledge automation</subject><subject>management</subject><subject>Metaverse</subject><subject>parallel intelligence</subject><subject>scenarios engineering (SE)</subject><subject>Task analysis</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEQhoMoWLQPIF4Cnrcmk90keyylVaHVQ-s5JNls3bImNdkW-vbu0tK5_HP4_hn4EHqiZEIpKV8369VsAgRgwgBkUeY3aASUywyAwe11p_wejVPaEUIoSM4IH6HlFH-Go2vx2jqvYxMSnvtt452Ljd_ilet-QhXasD3hOkS8CAdf6a4JHq9C5dqEGz9A-uhico_ortZtcuNLPqDvxXwze8-WX28fs-kys4zxLrOE5kxbURomTEWsrmuTgy0YB64NEF2InBqQBmglSkmtFUVlCC0M03mlJXtAL-e7-xj-Di51ahcO0fcvFQgpBJF5znqKnikbQ0rR1Wofm18dT4oSNXhTgzc1eFMXb33n-dxpnHNXvuyHFsD-AQPJaLs</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Li, Xuan</creator><creator>Tian, Yonglin</creator><creator>Ye, Peijun</creator><creator>Duan, Haibin</creator><creator>Wang, Fei-Yue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9185-3989</orcidid><orcidid>https://orcid.org/0000-0003-3999-8923</orcidid><orcidid>https://orcid.org/0000-0002-4926-3202</orcidid><orcidid>https://orcid.org/0000-0003-1911-5791</orcidid></search><sort><creationdate>20230401</creationdate><title>A Novel Scenarios Engineering Methodology for Foundation Models in Metaverse</title><author>Li, Xuan ; Tian, Yonglin ; Ye, Peijun ; Duan, Haibin ; Wang, Fei-Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-c0143ac79b37bd0caffb42c53626ab20a5741b28b21d7981cc75db015b3a4da83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation models</topic><topic>Automobile industry</topic><topic>Biological system modeling</topic><topic>Closed loops</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Foundation models</topic><topic>Industries</topic><topic>knowledge automation</topic><topic>management</topic><topic>Metaverse</topic><topic>parallel intelligence</topic><topic>scenarios engineering (SE)</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xuan</creatorcontrib><creatorcontrib>Tian, Yonglin</creatorcontrib><creatorcontrib>Ye, Peijun</creatorcontrib><creatorcontrib>Duan, Haibin</creatorcontrib><creatorcontrib>Wang, Fei-Yue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xuan</au><au>Tian, Yonglin</au><au>Ye, Peijun</au><au>Duan, Haibin</au><au>Wang, Fei-Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Scenarios Engineering Methodology for Foundation Models in Metaverse</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>53</volume><issue>4</issue><spage>2148</spage><epage>2159</epage><pages>2148-2159</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>Foundation models are used to train a broad system of general data to build adaptations to new bottlenecks. Typically, they contain hundreds of billions of hyperparameters that have been trained with hundreds of gigabytes of data. However, this type of black-box vulnerability places foundation models at risk of data poisoning attacks that are designed to pass on misinformation or purposely introduce machine bias. Moreover, ordinary researchers have not been able to completely participate due to the rise in deployment standards. This study introduces the theoretical framework of scenarios engineering (SE) for building accessible and reliable foundation models in metaverse, namely, "SE-enabled foundation models in metaverse." Particularly, the research framework comprises a six-layer architecture (infrastructure layer, operation layer, knowledge layer, intelligence layer, management layer, and interaction layer), which can provide controllability, trustworthiness, and interactivity for the foundation models in metaverse. This creates closed-loop, virtual-real, and human-machine environments that provides the best indices and goals for the foundation models, which allows us to fully validate and calibrate the corresponding models. Then, examples of use cases from the automotive industry are listed to provide transparency on the possible use and benefits of our approach. Finally, the open research topics of related frameworks are discussed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2022.3228594</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9185-3989</orcidid><orcidid>https://orcid.org/0000-0003-3999-8923</orcidid><orcidid>https://orcid.org/0000-0002-4926-3202</orcidid><orcidid>https://orcid.org/0000-0003-1911-5791</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2216 |
ispartof | IEEE transactions on systems, man, and cybernetics. Systems, 2023-04, Vol.53 (4), p.2148-2159 |
issn | 2168-2216 2168-2232 |
language | eng |
recordid | cdi_ieee_primary_9999152 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Automobile industry Biological system modeling Closed loops Computational modeling Data models Foundation models Industries knowledge automation management Metaverse parallel intelligence scenarios engineering (SE) Task analysis |
title | A Novel Scenarios Engineering Methodology for Foundation Models in Metaverse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Scenarios%20Engineering%20Methodology%20for%20Foundation%20Models%20in%20Metaverse&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Li,%20Xuan&rft.date=2023-04-01&rft.volume=53&rft.issue=4&rft.spage=2148&rft.epage=2159&rft.pages=2148-2159&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2022.3228594&rft_dat=%3Cproquest_ieee_%3E2787708443%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787708443&rft_id=info:pmid/&rft_ieee_id=9999152&rfr_iscdi=true |