Octopus: Exploiting the Edge Intelligence for Accessible 5G Mobile Performance Enhancement

While 5G has rolled out since 2019 and exhibited versatile advantages, its performance under high/extreme mobility scenes (e.g., driving, high-speed railway or HSR) remains mysterious. In this work, we carry out a large-scale field-trial campaign, taking > 13,000 Km round-trips on HSR moving at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on networking 2023-12, Vol.31 (6), p.1-16
Hauptverfasser: An, Congkai, Zhou, Anfu, Pei, Jialiang, Liu, Xi, Xu, Dongzhu, Liu, Liang, Ma, Huadong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 6
container_start_page 1
container_title IEEE/ACM transactions on networking
container_volume 31
creator An, Congkai
Zhou, Anfu
Pei, Jialiang
Liu, Xi
Xu, Dongzhu
Liu, Liang
Ma, Huadong
description While 5G has rolled out since 2019 and exhibited versatile advantages, its performance under high/extreme mobility scenes (e.g., driving, high-speed railway or HSR) remains mysterious. In this work, we carry out a large-scale field-trial campaign, taking > 13,000 Km round-trips on HSR moving at 250-350 Km/h, with operational 5G cellular coverage along the railway. Our empirical study reveals that coupling interaction among high mobility, 5G handover characteristics, and applications' sluggish reaction to handover, results in catastrophic damage to user experience: low TCP bandwidth utilization of 26.6% and glitchy 4K VoD streaming. To solve the problem, we propose an edge-assisted mobility management framework called . Different from previous works, aims at a standard-compatible and easy-to-deploy solution, thus we take a new design paradigm of exploiting the edge intelligence on multi-access edge computing (MEC). We realize as a universal MEC service ready for benefiting any third-party mobile applications. We prototype, deploy, and evaluate in operational 5G, which demonstrates the significant performance gain across the full-range mobile scenarios, e.g., HSR, driving, and walking.
doi_str_mv 10.1109/TNET.2022.3224369
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9998491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9998491</ieee_id><sourcerecordid>2904415164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-da570fa048d02fe6672dd61818e8645b2b497cf5e594dac59bf3a4a41b280a0f3</originalsourceid><addsrcrecordid>eNo9kEFLwzAUx4MoOKcfQLwEPHcmaZIl3saoczCdh3nxEtL0Zevo2pp0oN_elg1P7w_v938PfgjdUzKhlOinzXu2mTDC2CRljKdSX6ARFUIlTEh52Wci00RKza7RTYx7QmhKmByhr7XrmvYYn3H201ZN2ZX1Fnc7wFmxBbysO6iqcgu1A-ybgGfOQYxlXgEWC_zW5GWfPiD0u4MdoKzeDfMAdXeLrrytItyd5xh9vmSb-WuyWi-W89kqcUypLimsmBJvCVcFYR6knLKikFRRBUpykbOc66nzAoTmhXVC5z613HKaM0Us8ekYPZ7utqH5PkLszL45hrp_aZgmnFNBJe8peqJcaGIM4E0byoMNv4YSMyg0g0IzKDRnhX3n4dQpAeCf11orrmn6B6TobNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904415164</pqid></control><display><type>article</type><title>Octopus: Exploiting the Edge Intelligence for Accessible 5G Mobile Performance Enhancement</title><source>ACM Digital Library Complete</source><source>IEEE Electronic Library (IEL)</source><creator>An, Congkai ; Zhou, Anfu ; Pei, Jialiang ; Liu, Xi ; Xu, Dongzhu ; Liu, Liang ; Ma, Huadong</creator><creatorcontrib>An, Congkai ; Zhou, Anfu ; Pei, Jialiang ; Liu, Xi ; Xu, Dongzhu ; Liu, Liang ; Ma, Huadong</creatorcontrib><description>While 5G has rolled out since 2019 and exhibited versatile advantages, its performance under high/extreme mobility scenes (e.g., driving, high-speed railway or HSR) remains mysterious. In this work, we carry out a large-scale field-trial campaign, taking &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;&gt;&lt;/tex-math&gt; &lt;/inline-formula&gt;13,000 Km round-trips on HSR moving at 250-350 Km/h, with operational 5G cellular coverage along the railway. Our empirical study reveals that coupling interaction among high mobility, 5G handover characteristics, and applications' sluggish reaction to handover, results in catastrophic damage to user experience: low TCP bandwidth utilization of 26.6% and glitchy 4K VoD streaming. To solve the problem, we propose an edge-assisted mobility management framework called . Different from previous works, aims at a standard-compatible and easy-to-deploy solution, thus we take a new design paradigm of exploiting the edge intelligence on multi-access edge computing (MEC). We realize as a universal MEC service ready for benefiting any third-party mobile applications. We prototype, deploy, and evaluate in operational 5G, which demonstrates the significant performance gain across the full-range mobile scenarios, e.g., HSR, driving, and walking.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2022.3224369</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>5G mobile communication ; Applications programs ; Edge computing ; High speed rail ; Intelligence ; Mobile computing ; Mobility management ; Octopuses ; Performance enhancement ; transport protocols ; User experience</subject><ispartof>IEEE/ACM transactions on networking, 2023-12, Vol.31 (6), p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-da570fa048d02fe6672dd61818e8645b2b497cf5e594dac59bf3a4a41b280a0f3</cites><orcidid>0000-0002-5040-2468 ; 0000-0002-7199-5047 ; 0000-0002-9945-6483 ; 0000-0002-8785-3350 ; 0000-0003-4053-8772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9998491$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>An, Congkai</creatorcontrib><creatorcontrib>Zhou, Anfu</creatorcontrib><creatorcontrib>Pei, Jialiang</creatorcontrib><creatorcontrib>Liu, Xi</creatorcontrib><creatorcontrib>Xu, Dongzhu</creatorcontrib><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Ma, Huadong</creatorcontrib><title>Octopus: Exploiting the Edge Intelligence for Accessible 5G Mobile Performance Enhancement</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>While 5G has rolled out since 2019 and exhibited versatile advantages, its performance under high/extreme mobility scenes (e.g., driving, high-speed railway or HSR) remains mysterious. In this work, we carry out a large-scale field-trial campaign, taking &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;&gt;&lt;/tex-math&gt; &lt;/inline-formula&gt;13,000 Km round-trips on HSR moving at 250-350 Km/h, with operational 5G cellular coverage along the railway. Our empirical study reveals that coupling interaction among high mobility, 5G handover characteristics, and applications' sluggish reaction to handover, results in catastrophic damage to user experience: low TCP bandwidth utilization of 26.6% and glitchy 4K VoD streaming. To solve the problem, we propose an edge-assisted mobility management framework called . Different from previous works, aims at a standard-compatible and easy-to-deploy solution, thus we take a new design paradigm of exploiting the edge intelligence on multi-access edge computing (MEC). We realize as a universal MEC service ready for benefiting any third-party mobile applications. We prototype, deploy, and evaluate in operational 5G, which demonstrates the significant performance gain across the full-range mobile scenarios, e.g., HSR, driving, and walking.</description><subject>5G mobile communication</subject><subject>Applications programs</subject><subject>Edge computing</subject><subject>High speed rail</subject><subject>Intelligence</subject><subject>Mobile computing</subject><subject>Mobility management</subject><subject>Octopuses</subject><subject>Performance enhancement</subject><subject>transport protocols</subject><subject>User experience</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kEFLwzAUx4MoOKcfQLwEPHcmaZIl3saoczCdh3nxEtL0Zevo2pp0oN_elg1P7w_v938PfgjdUzKhlOinzXu2mTDC2CRljKdSX6ARFUIlTEh52Wci00RKza7RTYx7QmhKmByhr7XrmvYYn3H201ZN2ZX1Fnc7wFmxBbysO6iqcgu1A-ybgGfOQYxlXgEWC_zW5GWfPiD0u4MdoKzeDfMAdXeLrrytItyd5xh9vmSb-WuyWi-W89kqcUypLimsmBJvCVcFYR6knLKikFRRBUpykbOc66nzAoTmhXVC5z613HKaM0Us8ekYPZ7utqH5PkLszL45hrp_aZgmnFNBJe8peqJcaGIM4E0byoMNv4YSMyg0g0IzKDRnhX3n4dQpAeCf11orrmn6B6TobNs</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>An, Congkai</creator><creator>Zhou, Anfu</creator><creator>Pei, Jialiang</creator><creator>Liu, Xi</creator><creator>Xu, Dongzhu</creator><creator>Liu, Liang</creator><creator>Ma, Huadong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5040-2468</orcidid><orcidid>https://orcid.org/0000-0002-7199-5047</orcidid><orcidid>https://orcid.org/0000-0002-9945-6483</orcidid><orcidid>https://orcid.org/0000-0002-8785-3350</orcidid><orcidid>https://orcid.org/0000-0003-4053-8772</orcidid></search><sort><creationdate>20231201</creationdate><title>Octopus: Exploiting the Edge Intelligence for Accessible 5G Mobile Performance Enhancement</title><author>An, Congkai ; Zhou, Anfu ; Pei, Jialiang ; Liu, Xi ; Xu, Dongzhu ; Liu, Liang ; Ma, Huadong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-da570fa048d02fe6672dd61818e8645b2b497cf5e594dac59bf3a4a41b280a0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>5G mobile communication</topic><topic>Applications programs</topic><topic>Edge computing</topic><topic>High speed rail</topic><topic>Intelligence</topic><topic>Mobile computing</topic><topic>Mobility management</topic><topic>Octopuses</topic><topic>Performance enhancement</topic><topic>transport protocols</topic><topic>User experience</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Congkai</creatorcontrib><creatorcontrib>Zhou, Anfu</creatorcontrib><creatorcontrib>Pei, Jialiang</creatorcontrib><creatorcontrib>Liu, Xi</creatorcontrib><creatorcontrib>Xu, Dongzhu</creatorcontrib><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Ma, Huadong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Congkai</au><au>Zhou, Anfu</au><au>Pei, Jialiang</au><au>Liu, Xi</au><au>Xu, Dongzhu</au><au>Liu, Liang</au><au>Ma, Huadong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Octopus: Exploiting the Edge Intelligence for Accessible 5G Mobile Performance Enhancement</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>31</volume><issue>6</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>While 5G has rolled out since 2019 and exhibited versatile advantages, its performance under high/extreme mobility scenes (e.g., driving, high-speed railway or HSR) remains mysterious. In this work, we carry out a large-scale field-trial campaign, taking &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;&gt;&lt;/tex-math&gt; &lt;/inline-formula&gt;13,000 Km round-trips on HSR moving at 250-350 Km/h, with operational 5G cellular coverage along the railway. Our empirical study reveals that coupling interaction among high mobility, 5G handover characteristics, and applications' sluggish reaction to handover, results in catastrophic damage to user experience: low TCP bandwidth utilization of 26.6% and glitchy 4K VoD streaming. To solve the problem, we propose an edge-assisted mobility management framework called . Different from previous works, aims at a standard-compatible and easy-to-deploy solution, thus we take a new design paradigm of exploiting the edge intelligence on multi-access edge computing (MEC). We realize as a universal MEC service ready for benefiting any third-party mobile applications. We prototype, deploy, and evaluate in operational 5G, which demonstrates the significant performance gain across the full-range mobile scenarios, e.g., HSR, driving, and walking.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2022.3224369</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5040-2468</orcidid><orcidid>https://orcid.org/0000-0002-7199-5047</orcidid><orcidid>https://orcid.org/0000-0002-9945-6483</orcidid><orcidid>https://orcid.org/0000-0002-8785-3350</orcidid><orcidid>https://orcid.org/0000-0003-4053-8772</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-6692
ispartof IEEE/ACM transactions on networking, 2023-12, Vol.31 (6), p.1-16
issn 1063-6692
1558-2566
language eng
recordid cdi_ieee_primary_9998491
source ACM Digital Library Complete; IEEE Electronic Library (IEL)
subjects 5G mobile communication
Applications programs
Edge computing
High speed rail
Intelligence
Mobile computing
Mobility management
Octopuses
Performance enhancement
transport protocols
User experience
title Octopus: Exploiting the Edge Intelligence for Accessible 5G Mobile Performance Enhancement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A02%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Octopus:%20Exploiting%20the%20Edge%20Intelligence%20for%20Accessible%205G%20Mobile%20Performance%20Enhancement&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=An,%20Congkai&rft.date=2023-12-01&rft.volume=31&rft.issue=6&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2022.3224369&rft_dat=%3Cproquest_ieee_%3E2904415164%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904415164&rft_id=info:pmid/&rft_ieee_id=9998491&rfr_iscdi=true