Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration
This paper develops a method for estimating the sparse array mutual coupling matrix and sensor gains/phases using a signal source at unknown directions. The sparsity of the mutual coupling matrix results from the recognition that the mutual coupling between array elements is inversely related to the...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 297 |
---|---|
container_issue | |
container_start_page | 294 |
container_title | |
container_volume | |
creator | Jaffer, A.G. |
description | This paper develops a method for estimating the sparse array mutual coupling matrix and sensor gains/phases using a signal source at unknown directions. The sparsity of the mutual coupling matrix results from the recognition that the mutual coupling between array elements is inversely related to their separation and may be negligible for elements separated by a few wavelengths. We remove the restriction that the signal test source directions must be known, as required in an earlier recent work by the author (see Jaffer, A.G., Proc. 35th Asilomar Conference on Signals, Systems and Computers, 2001). A fast converging iterative method is developed which estimates the directions and the sparse mutual coupling matrix and sensor gains/phases. Computer simulation results are presented to demonstrate the utility of the method. |
doi_str_mv | 10.1109/NRC.2002.999734 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_999734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>999734</ieee_id><sourcerecordid>15509470</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-5f4a7b5ff5c2185058d4ae972e19fcf95a00ccc3239aa68701018663c79e2de53</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhgMiKGvPgqdcPLY7SZqmOUrxCxYFPw6eltk0WSPdtiQtuP_eYMVhYA7Pw8zwEnLJoGAM9PrppSk4AC-01kqUJyTTqobUQgmp4IxkMX5BKgkKpDonH68jhmjpYZ5m7KgZ5rHz_Z4ecAr-m2Lf0mj7OAS6R9-vx09Mso2TT4IfeuoSwRDwSHGehtxg53fhF12QU4ddtNnfXJH3u9u35iHfPN8_Njeb3DNRTrl0JaqddE4azmoJsm5LtFpxy7QzTksEMMYILjRiVStgwOqqEkZpy1srxYpcL3tHjOm8C9gbH7djSC-G45ZJCbpUkLyrxfPW2n-85CR-AOSHXjc</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jaffer, A.G.</creator><creatorcontrib>Jaffer, A.G.</creatorcontrib><description>This paper develops a method for estimating the sparse array mutual coupling matrix and sensor gains/phases using a signal source at unknown directions. The sparsity of the mutual coupling matrix results from the recognition that the mutual coupling between array elements is inversely related to their separation and may be negligible for elements separated by a few wavelengths. We remove the restriction that the signal test source directions must be known, as required in an earlier recent work by the author (see Jaffer, A.G., Proc. 35th Asilomar Conference on Signals, Systems and Computers, 2001). A fast converging iterative method is developed which estimates the directions and the sparse mutual coupling matrix and sensor gains/phases. Computer simulation results are presented to demonstrate the utility of the method.</description><identifier>ISBN: 9780780373570</identifier><identifier>ISBN: 078037357X</identifier><identifier>DOI: 10.1109/NRC.2002.999734</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Antennas ; Applied sciences ; Calibration ; Computer simulation ; Exact sciences and technology ; Iterative methods ; Mutual coupling ; Phase estimation ; Phased arrays ; Radiocommunications ; Sensor arrays ; Sensor systems ; Sparse matrices ; Telecommunications ; Telecommunications and information theory ; Testing</subject><ispartof>Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322), 2002, p.294-297</ispartof><rights>2004 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/999734$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/999734$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15509470$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jaffer, A.G.</creatorcontrib><title>Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration</title><title>Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)</title><addtitle>NRC</addtitle><description>This paper develops a method for estimating the sparse array mutual coupling matrix and sensor gains/phases using a signal source at unknown directions. The sparsity of the mutual coupling matrix results from the recognition that the mutual coupling between array elements is inversely related to their separation and may be negligible for elements separated by a few wavelengths. We remove the restriction that the signal test source directions must be known, as required in an earlier recent work by the author (see Jaffer, A.G., Proc. 35th Asilomar Conference on Signals, Systems and Computers, 2001). A fast converging iterative method is developed which estimates the directions and the sparse mutual coupling matrix and sensor gains/phases. Computer simulation results are presented to demonstrate the utility of the method.</description><subject>Antennas</subject><subject>Applied sciences</subject><subject>Calibration</subject><subject>Computer simulation</subject><subject>Exact sciences and technology</subject><subject>Iterative methods</subject><subject>Mutual coupling</subject><subject>Phase estimation</subject><subject>Phased arrays</subject><subject>Radiocommunications</subject><subject>Sensor arrays</subject><subject>Sensor systems</subject><subject>Sparse matrices</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Testing</subject><isbn>9780780373570</isbn><isbn>078037357X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1LxDAQhgMiKGvPgqdcPLY7SZqmOUrxCxYFPw6eltk0WSPdtiQtuP_eYMVhYA7Pw8zwEnLJoGAM9PrppSk4AC-01kqUJyTTqobUQgmp4IxkMX5BKgkKpDonH68jhmjpYZ5m7KgZ5rHz_Z4ecAr-m2Lf0mj7OAS6R9-vx09Mso2TT4IfeuoSwRDwSHGehtxg53fhF12QU4ddtNnfXJH3u9u35iHfPN8_Njeb3DNRTrl0JaqddE4azmoJsm5LtFpxy7QzTksEMMYILjRiVStgwOqqEkZpy1srxYpcL3tHjOm8C9gbH7djSC-G45ZJCbpUkLyrxfPW2n-85CR-AOSHXjc</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Jaffer, A.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration</title><author>Jaffer, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-5f4a7b5ff5c2185058d4ae972e19fcf95a00ccc3239aa68701018663c79e2de53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Antennas</topic><topic>Applied sciences</topic><topic>Calibration</topic><topic>Computer simulation</topic><topic>Exact sciences and technology</topic><topic>Iterative methods</topic><topic>Mutual coupling</topic><topic>Phase estimation</topic><topic>Phased arrays</topic><topic>Radiocommunications</topic><topic>Sensor arrays</topic><topic>Sensor systems</topic><topic>Sparse matrices</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Jaffer, A.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jaffer, A.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration</atitle><btitle>Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)</btitle><stitle>NRC</stitle><date>2002</date><risdate>2002</risdate><spage>294</spage><epage>297</epage><pages>294-297</pages><isbn>9780780373570</isbn><isbn>078037357X</isbn><abstract>This paper develops a method for estimating the sparse array mutual coupling matrix and sensor gains/phases using a signal source at unknown directions. The sparsity of the mutual coupling matrix results from the recognition that the mutual coupling between array elements is inversely related to their separation and may be negligible for elements separated by a few wavelengths. We remove the restriction that the signal test source directions must be known, as required in an earlier recent work by the author (see Jaffer, A.G., Proc. 35th Asilomar Conference on Signals, Systems and Computers, 2001). A fast converging iterative method is developed which estimates the directions and the sparse mutual coupling matrix and sensor gains/phases. Computer simulation results are presented to demonstrate the utility of the method.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/NRC.2002.999734</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780373570 |
ispartof | Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322), 2002, p.294-297 |
issn | |
language | eng |
recordid | cdi_ieee_primary_999734 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Antennas Applied sciences Calibration Computer simulation Exact sciences and technology Iterative methods Mutual coupling Phase estimation Phased arrays Radiocommunications Sensor arrays Sensor systems Sparse matrices Telecommunications Telecommunications and information theory Testing |
title | Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T15%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sparse%20mutual%20coupling%20matrix%20and%20sensor%20gain/phase%20estimation%20for%20array%20auto-calibration&rft.btitle=Proceedings%20of%20the%202002%20IEEE%20Radar%20Conference%20(IEEE%20Cat.%20No.02CH37322)&rft.au=Jaffer,%20A.G.&rft.date=2002&rft.spage=294&rft.epage=297&rft.pages=294-297&rft.isbn=9780780373570&rft.isbn_list=078037357X&rft_id=info:doi/10.1109/NRC.2002.999734&rft_dat=%3Cpascalfrancis_6IE%3E15509470%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=999734&rfr_iscdi=true |