Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration

This paper develops a method for estimating the sparse array mutual coupling matrix and sensor gains/phases using a signal source at unknown directions. The sparsity of the mutual coupling matrix results from the recognition that the mutual coupling between array elements is inversely related to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Jaffer, A.G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 297
container_issue
container_start_page 294
container_title
container_volume
creator Jaffer, A.G.
description This paper develops a method for estimating the sparse array mutual coupling matrix and sensor gains/phases using a signal source at unknown directions. The sparsity of the mutual coupling matrix results from the recognition that the mutual coupling between array elements is inversely related to their separation and may be negligible for elements separated by a few wavelengths. We remove the restriction that the signal test source directions must be known, as required in an earlier recent work by the author (see Jaffer, A.G., Proc. 35th Asilomar Conference on Signals, Systems and Computers, 2001). A fast converging iterative method is developed which estimates the directions and the sparse mutual coupling matrix and sensor gains/phases. Computer simulation results are presented to demonstrate the utility of the method.
doi_str_mv 10.1109/NRC.2002.999734
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_999734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>999734</ieee_id><sourcerecordid>15509470</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-5f4a7b5ff5c2185058d4ae972e19fcf95a00ccc3239aa68701018663c79e2de53</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhgMiKGvPgqdcPLY7SZqmOUrxCxYFPw6eltk0WSPdtiQtuP_eYMVhYA7Pw8zwEnLJoGAM9PrppSk4AC-01kqUJyTTqobUQgmp4IxkMX5BKgkKpDonH68jhmjpYZ5m7KgZ5rHz_Z4ecAr-m2Lf0mj7OAS6R9-vx09Mso2TT4IfeuoSwRDwSHGehtxg53fhF12QU4ddtNnfXJH3u9u35iHfPN8_Njeb3DNRTrl0JaqddE4azmoJsm5LtFpxy7QzTksEMMYILjRiVStgwOqqEkZpy1srxYpcL3tHjOm8C9gbH7djSC-G45ZJCbpUkLyrxfPW2n-85CR-AOSHXjc</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jaffer, A.G.</creator><creatorcontrib>Jaffer, A.G.</creatorcontrib><description>This paper develops a method for estimating the sparse array mutual coupling matrix and sensor gains/phases using a signal source at unknown directions. The sparsity of the mutual coupling matrix results from the recognition that the mutual coupling between array elements is inversely related to their separation and may be negligible for elements separated by a few wavelengths. We remove the restriction that the signal test source directions must be known, as required in an earlier recent work by the author (see Jaffer, A.G., Proc. 35th Asilomar Conference on Signals, Systems and Computers, 2001). A fast converging iterative method is developed which estimates the directions and the sparse mutual coupling matrix and sensor gains/phases. Computer simulation results are presented to demonstrate the utility of the method.</description><identifier>ISBN: 9780780373570</identifier><identifier>ISBN: 078037357X</identifier><identifier>DOI: 10.1109/NRC.2002.999734</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Antennas ; Applied sciences ; Calibration ; Computer simulation ; Exact sciences and technology ; Iterative methods ; Mutual coupling ; Phase estimation ; Phased arrays ; Radiocommunications ; Sensor arrays ; Sensor systems ; Sparse matrices ; Telecommunications ; Telecommunications and information theory ; Testing</subject><ispartof>Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322), 2002, p.294-297</ispartof><rights>2004 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/999734$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/999734$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15509470$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jaffer, A.G.</creatorcontrib><title>Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration</title><title>Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)</title><addtitle>NRC</addtitle><description>This paper develops a method for estimating the sparse array mutual coupling matrix and sensor gains/phases using a signal source at unknown directions. The sparsity of the mutual coupling matrix results from the recognition that the mutual coupling between array elements is inversely related to their separation and may be negligible for elements separated by a few wavelengths. We remove the restriction that the signal test source directions must be known, as required in an earlier recent work by the author (see Jaffer, A.G., Proc. 35th Asilomar Conference on Signals, Systems and Computers, 2001). A fast converging iterative method is developed which estimates the directions and the sparse mutual coupling matrix and sensor gains/phases. Computer simulation results are presented to demonstrate the utility of the method.</description><subject>Antennas</subject><subject>Applied sciences</subject><subject>Calibration</subject><subject>Computer simulation</subject><subject>Exact sciences and technology</subject><subject>Iterative methods</subject><subject>Mutual coupling</subject><subject>Phase estimation</subject><subject>Phased arrays</subject><subject>Radiocommunications</subject><subject>Sensor arrays</subject><subject>Sensor systems</subject><subject>Sparse matrices</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Testing</subject><isbn>9780780373570</isbn><isbn>078037357X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1LxDAQhgMiKGvPgqdcPLY7SZqmOUrxCxYFPw6eltk0WSPdtiQtuP_eYMVhYA7Pw8zwEnLJoGAM9PrppSk4AC-01kqUJyTTqobUQgmp4IxkMX5BKgkKpDonH68jhmjpYZ5m7KgZ5rHz_Z4ecAr-m2Lf0mj7OAS6R9-vx09Mso2TT4IfeuoSwRDwSHGehtxg53fhF12QU4ddtNnfXJH3u9u35iHfPN8_Njeb3DNRTrl0JaqddE4azmoJsm5LtFpxy7QzTksEMMYILjRiVStgwOqqEkZpy1srxYpcL3tHjOm8C9gbH7djSC-G45ZJCbpUkLyrxfPW2n-85CR-AOSHXjc</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Jaffer, A.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration</title><author>Jaffer, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-5f4a7b5ff5c2185058d4ae972e19fcf95a00ccc3239aa68701018663c79e2de53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Antennas</topic><topic>Applied sciences</topic><topic>Calibration</topic><topic>Computer simulation</topic><topic>Exact sciences and technology</topic><topic>Iterative methods</topic><topic>Mutual coupling</topic><topic>Phase estimation</topic><topic>Phased arrays</topic><topic>Radiocommunications</topic><topic>Sensor arrays</topic><topic>Sensor systems</topic><topic>Sparse matrices</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Jaffer, A.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jaffer, A.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration</atitle><btitle>Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)</btitle><stitle>NRC</stitle><date>2002</date><risdate>2002</risdate><spage>294</spage><epage>297</epage><pages>294-297</pages><isbn>9780780373570</isbn><isbn>078037357X</isbn><abstract>This paper develops a method for estimating the sparse array mutual coupling matrix and sensor gains/phases using a signal source at unknown directions. The sparsity of the mutual coupling matrix results from the recognition that the mutual coupling between array elements is inversely related to their separation and may be negligible for elements separated by a few wavelengths. We remove the restriction that the signal test source directions must be known, as required in an earlier recent work by the author (see Jaffer, A.G., Proc. 35th Asilomar Conference on Signals, Systems and Computers, 2001). A fast converging iterative method is developed which estimates the directions and the sparse mutual coupling matrix and sensor gains/phases. Computer simulation results are presented to demonstrate the utility of the method.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/NRC.2002.999734</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780373570
ispartof Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322), 2002, p.294-297
issn
language eng
recordid cdi_ieee_primary_999734
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Antennas
Applied sciences
Calibration
Computer simulation
Exact sciences and technology
Iterative methods
Mutual coupling
Phase estimation
Phased arrays
Radiocommunications
Sensor arrays
Sensor systems
Sparse matrices
Telecommunications
Telecommunications and information theory
Testing
title Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T15%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sparse%20mutual%20coupling%20matrix%20and%20sensor%20gain/phase%20estimation%20for%20array%20auto-calibration&rft.btitle=Proceedings%20of%20the%202002%20IEEE%20Radar%20Conference%20(IEEE%20Cat.%20No.02CH37322)&rft.au=Jaffer,%20A.G.&rft.date=2002&rft.spage=294&rft.epage=297&rft.pages=294-297&rft.isbn=9780780373570&rft.isbn_list=078037357X&rft_id=info:doi/10.1109/NRC.2002.999734&rft_dat=%3Cpascalfrancis_6IE%3E15509470%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=999734&rfr_iscdi=true