Patient Health Representation Learning via Correlational Sparse Prior of Medical Features
Exploiting the correlations between medical features is essential to the success of healthcare data analysis. However, most existing methods are either suffering large estimation variance for data insufficiency or inflexible in terms of demanding task-specific medical knowledge. In this paper, we pr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2023-11, Vol.35 (11), p.1-14 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 35 |
creator | Ma, Xinyu Wang, Yasha Chu, Xu Ma, Liantao Tang, Wen Zhao, Junfeng Yuan, Ye Wang, Guoren |
description | Exploiting the correlations between medical features is essential to the success of healthcare data analysis. However, most existing methods are either suffering large estimation variance for data insufficiency or inflexible in terms of demanding task-specific medical knowledge. In this paper, we propose a novel patient health representation learning framework dubbed SAFARI SAFARI learns a compact representation by imposing a clinical-fact-inspired task-agnostic correlational sparsity prior to the correlations of medical feature pairs. Specifically, we learn the compact representation by solving the bi-level optimization problem, which involves solving the high-level inter-group correlations and the nested lower-level intra-group correlations. We leverage the Laplacian kernel as a robust metric for feature grouping and graph neural networks for solving the bi-level optimization problem following the optimal value reformulation paradigm. Experiments on five datasets of various inputs and tasks demonstrate the efficacy of SAFARI . The discovered findings are also consistent with our insights and medical literature, which can provide valuable clinical explanations. |
doi_str_mv | 10.1109/TKDE.2022.3230454 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9992086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9992086</ieee_id><sourcerecordid>2873585055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f065dd63747e59db225bf8fa668d1b0a2858004ba9f95826f714fbcfd8d84df3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAIiLJc4p_k3sIyotRRRRQS-cLCdeQ6qQBDtF4u1xacVpV7Mzo9WH0CUlE0qJvlk_3s0mjDA24YwTIcURGlEpVcaopsdpJ4JmgoviFJ3FuCGEqELREXpb2aGGdsALsM3wgV-gDxCTkOSuxUuwoa3bd_xdWzztQoDm72Ab_NrbEAGvQt0F3Hn8BK6ukj4HO2xTxzk68baJcHGYY7Sez9bTRbZ8vn-Y3i6zimk-ZJ7k0rmcF6IAqV3JmCy98jbPlaMlsUxJRYgorfZaKpb7ggpfVt4pp4TzfIyu97V96L62EAez6bYhPRgNUwWXShIpk4vuXVXoYgzgTR_qTxt-DCVmB9DsAJodQHMAmDJX-0wNAP9-rTUjKue_VRBs0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873585055</pqid></control><display><type>article</type><title>Patient Health Representation Learning via Correlational Sparse Prior of Medical Features</title><source>IEEE Electronic Library (IEL)</source><creator>Ma, Xinyu ; Wang, Yasha ; Chu, Xu ; Ma, Liantao ; Tang, Wen ; Zhao, Junfeng ; Yuan, Ye ; Wang, Guoren</creator><creatorcontrib>Ma, Xinyu ; Wang, Yasha ; Chu, Xu ; Ma, Liantao ; Tang, Wen ; Zhao, Junfeng ; Yuan, Ye ; Wang, Guoren</creatorcontrib><description>Exploiting the correlations between medical features is essential to the success of healthcare data analysis. However, most existing methods are either suffering large estimation variance for data insufficiency or inflexible in terms of demanding task-specific medical knowledge. In this paper, we propose a novel patient health representation learning framework dubbed SAFARI SAFARI learns a compact representation by imposing a clinical-fact-inspired task-agnostic correlational sparsity prior to the correlations of medical feature pairs. Specifically, we learn the compact representation by solving the bi-level optimization problem, which involves solving the high-level inter-group correlations and the nested lower-level intra-group correlations. We leverage the Laplacian kernel as a robust metric for feature grouping and graph neural networks for solving the bi-level optimization problem following the optimal value reformulation paradigm. Experiments on five datasets of various inputs and tasks demonstrate the efficacy of SAFARI . The discovered findings are also consistent with our insights and medical literature, which can provide valuable clinical explanations.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3230454</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Clinical Risk Prediction ; Correlation ; Covariance matrices ; Data analysis ; Electronic Health Records ; Feature extraction ; Graph neural networks ; Learning ; Medical diagnostic imaging ; Optimization ; Representation learning ; Representations ; Task analysis</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-11, Vol.35 (11), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f065dd63747e59db225bf8fa668d1b0a2858004ba9f95826f714fbcfd8d84df3</citedby><cites>FETCH-LOGICAL-c293t-f065dd63747e59db225bf8fa668d1b0a2858004ba9f95826f714fbcfd8d84df3</cites><orcidid>0000-0002-0247-9866 ; 0000-0003-4574-0830 ; 0000-0002-0181-8379 ; 0000-0002-8026-9688 ; 0000-0002-2263-2979 ; 0000-0002-0520-7196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9992086$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9992086$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ma, Xinyu</creatorcontrib><creatorcontrib>Wang, Yasha</creatorcontrib><creatorcontrib>Chu, Xu</creatorcontrib><creatorcontrib>Ma, Liantao</creatorcontrib><creatorcontrib>Tang, Wen</creatorcontrib><creatorcontrib>Zhao, Junfeng</creatorcontrib><creatorcontrib>Yuan, Ye</creatorcontrib><creatorcontrib>Wang, Guoren</creatorcontrib><title>Patient Health Representation Learning via Correlational Sparse Prior of Medical Features</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Exploiting the correlations between medical features is essential to the success of healthcare data analysis. However, most existing methods are either suffering large estimation variance for data insufficiency or inflexible in terms of demanding task-specific medical knowledge. In this paper, we propose a novel patient health representation learning framework dubbed SAFARI SAFARI learns a compact representation by imposing a clinical-fact-inspired task-agnostic correlational sparsity prior to the correlations of medical feature pairs. Specifically, we learn the compact representation by solving the bi-level optimization problem, which involves solving the high-level inter-group correlations and the nested lower-level intra-group correlations. We leverage the Laplacian kernel as a robust metric for feature grouping and graph neural networks for solving the bi-level optimization problem following the optimal value reformulation paradigm. Experiments on five datasets of various inputs and tasks demonstrate the efficacy of SAFARI . The discovered findings are also consistent with our insights and medical literature, which can provide valuable clinical explanations.</description><subject>Clinical Risk Prediction</subject><subject>Correlation</subject><subject>Covariance matrices</subject><subject>Data analysis</subject><subject>Electronic Health Records</subject><subject>Feature extraction</subject><subject>Graph neural networks</subject><subject>Learning</subject><subject>Medical diagnostic imaging</subject><subject>Optimization</subject><subject>Representation learning</subject><subject>Representations</subject><subject>Task analysis</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqXwAIiLJc4p_k3sIyotRRRRQS-cLCdeQ6qQBDtF4u1xacVpV7Mzo9WH0CUlE0qJvlk_3s0mjDA24YwTIcURGlEpVcaopsdpJ4JmgoviFJ3FuCGEqELREXpb2aGGdsALsM3wgV-gDxCTkOSuxUuwoa3bd_xdWzztQoDm72Ab_NrbEAGvQt0F3Hn8BK6ukj4HO2xTxzk68baJcHGYY7Sez9bTRbZ8vn-Y3i6zimk-ZJ7k0rmcF6IAqV3JmCy98jbPlaMlsUxJRYgorfZaKpb7ggpfVt4pp4TzfIyu97V96L62EAez6bYhPRgNUwWXShIpk4vuXVXoYgzgTR_qTxt-DCVmB9DsAJodQHMAmDJX-0wNAP9-rTUjKue_VRBs0Q</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Ma, Xinyu</creator><creator>Wang, Yasha</creator><creator>Chu, Xu</creator><creator>Ma, Liantao</creator><creator>Tang, Wen</creator><creator>Zhao, Junfeng</creator><creator>Yuan, Ye</creator><creator>Wang, Guoren</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0247-9866</orcidid><orcidid>https://orcid.org/0000-0003-4574-0830</orcidid><orcidid>https://orcid.org/0000-0002-0181-8379</orcidid><orcidid>https://orcid.org/0000-0002-8026-9688</orcidid><orcidid>https://orcid.org/0000-0002-2263-2979</orcidid><orcidid>https://orcid.org/0000-0002-0520-7196</orcidid></search><sort><creationdate>20231101</creationdate><title>Patient Health Representation Learning via Correlational Sparse Prior of Medical Features</title><author>Ma, Xinyu ; Wang, Yasha ; Chu, Xu ; Ma, Liantao ; Tang, Wen ; Zhao, Junfeng ; Yuan, Ye ; Wang, Guoren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f065dd63747e59db225bf8fa668d1b0a2858004ba9f95826f714fbcfd8d84df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Clinical Risk Prediction</topic><topic>Correlation</topic><topic>Covariance matrices</topic><topic>Data analysis</topic><topic>Electronic Health Records</topic><topic>Feature extraction</topic><topic>Graph neural networks</topic><topic>Learning</topic><topic>Medical diagnostic imaging</topic><topic>Optimization</topic><topic>Representation learning</topic><topic>Representations</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Xinyu</creatorcontrib><creatorcontrib>Wang, Yasha</creatorcontrib><creatorcontrib>Chu, Xu</creatorcontrib><creatorcontrib>Ma, Liantao</creatorcontrib><creatorcontrib>Tang, Wen</creatorcontrib><creatorcontrib>Zhao, Junfeng</creatorcontrib><creatorcontrib>Yuan, Ye</creatorcontrib><creatorcontrib>Wang, Guoren</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ma, Xinyu</au><au>Wang, Yasha</au><au>Chu, Xu</au><au>Ma, Liantao</au><au>Tang, Wen</au><au>Zhao, Junfeng</au><au>Yuan, Ye</au><au>Wang, Guoren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patient Health Representation Learning via Correlational Sparse Prior of Medical Features</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>35</volume><issue>11</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Exploiting the correlations between medical features is essential to the success of healthcare data analysis. However, most existing methods are either suffering large estimation variance for data insufficiency or inflexible in terms of demanding task-specific medical knowledge. In this paper, we propose a novel patient health representation learning framework dubbed SAFARI SAFARI learns a compact representation by imposing a clinical-fact-inspired task-agnostic correlational sparsity prior to the correlations of medical feature pairs. Specifically, we learn the compact representation by solving the bi-level optimization problem, which involves solving the high-level inter-group correlations and the nested lower-level intra-group correlations. We leverage the Laplacian kernel as a robust metric for feature grouping and graph neural networks for solving the bi-level optimization problem following the optimal value reformulation paradigm. Experiments on five datasets of various inputs and tasks demonstrate the efficacy of SAFARI . The discovered findings are also consistent with our insights and medical literature, which can provide valuable clinical explanations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3230454</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0247-9866</orcidid><orcidid>https://orcid.org/0000-0003-4574-0830</orcidid><orcidid>https://orcid.org/0000-0002-0181-8379</orcidid><orcidid>https://orcid.org/0000-0002-8026-9688</orcidid><orcidid>https://orcid.org/0000-0002-2263-2979</orcidid><orcidid>https://orcid.org/0000-0002-0520-7196</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2023-11, Vol.35 (11), p.1-14 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_ieee_primary_9992086 |
source | IEEE Electronic Library (IEL) |
subjects | Clinical Risk Prediction Correlation Covariance matrices Data analysis Electronic Health Records Feature extraction Graph neural networks Learning Medical diagnostic imaging Optimization Representation learning Representations Task analysis |
title | Patient Health Representation Learning via Correlational Sparse Prior of Medical Features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patient%20Health%20Representation%20Learning%20via%20Correlational%20Sparse%20Prior%20of%20Medical%20Features&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Ma,%20Xinyu&rft.date=2023-11-01&rft.volume=35&rft.issue=11&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3230454&rft_dat=%3Cproquest_RIE%3E2873585055%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873585055&rft_id=info:pmid/&rft_ieee_id=9992086&rfr_iscdi=true |