Patient Health Representation Learning via Correlational Sparse Prior of Medical Features

Exploiting the correlations between medical features is essential to the success of healthcare data analysis. However, most existing methods are either suffering large estimation variance for data insufficiency or inflexible in terms of demanding task-specific medical knowledge. In this paper, we pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2023-11, Vol.35 (11), p.1-14
Hauptverfasser: Ma, Xinyu, Wang, Yasha, Chu, Xu, Ma, Liantao, Tang, Wen, Zhao, Junfeng, Yuan, Ye, Wang, Guoren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 11
container_start_page 1
container_title IEEE transactions on knowledge and data engineering
container_volume 35
creator Ma, Xinyu
Wang, Yasha
Chu, Xu
Ma, Liantao
Tang, Wen
Zhao, Junfeng
Yuan, Ye
Wang, Guoren
description Exploiting the correlations between medical features is essential to the success of healthcare data analysis. However, most existing methods are either suffering large estimation variance for data insufficiency or inflexible in terms of demanding task-specific medical knowledge. In this paper, we propose a novel patient health representation learning framework dubbed SAFARI SAFARI learns a compact representation by imposing a clinical-fact-inspired task-agnostic correlational sparsity prior to the correlations of medical feature pairs. Specifically, we learn the compact representation by solving the bi-level optimization problem, which involves solving the high-level inter-group correlations and the nested lower-level intra-group correlations. We leverage the Laplacian kernel as a robust metric for feature grouping and graph neural networks for solving the bi-level optimization problem following the optimal value reformulation paradigm. Experiments on five datasets of various inputs and tasks demonstrate the efficacy of SAFARI . The discovered findings are also consistent with our insights and medical literature, which can provide valuable clinical explanations.
doi_str_mv 10.1109/TKDE.2022.3230454
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9992086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9992086</ieee_id><sourcerecordid>2873585055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f065dd63747e59db225bf8fa668d1b0a2858004ba9f95826f714fbcfd8d84df3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAIiLJc4p_k3sIyotRRRRQS-cLCdeQ6qQBDtF4u1xacVpV7Mzo9WH0CUlE0qJvlk_3s0mjDA24YwTIcURGlEpVcaopsdpJ4JmgoviFJ3FuCGEqELREXpb2aGGdsALsM3wgV-gDxCTkOSuxUuwoa3bd_xdWzztQoDm72Ab_NrbEAGvQt0F3Hn8BK6ukj4HO2xTxzk68baJcHGYY7Sez9bTRbZ8vn-Y3i6zimk-ZJ7k0rmcF6IAqV3JmCy98jbPlaMlsUxJRYgorfZaKpb7ggpfVt4pp4TzfIyu97V96L62EAez6bYhPRgNUwWXShIpk4vuXVXoYgzgTR_qTxt-DCVmB9DsAJodQHMAmDJX-0wNAP9-rTUjKue_VRBs0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873585055</pqid></control><display><type>article</type><title>Patient Health Representation Learning via Correlational Sparse Prior of Medical Features</title><source>IEEE Electronic Library (IEL)</source><creator>Ma, Xinyu ; Wang, Yasha ; Chu, Xu ; Ma, Liantao ; Tang, Wen ; Zhao, Junfeng ; Yuan, Ye ; Wang, Guoren</creator><creatorcontrib>Ma, Xinyu ; Wang, Yasha ; Chu, Xu ; Ma, Liantao ; Tang, Wen ; Zhao, Junfeng ; Yuan, Ye ; Wang, Guoren</creatorcontrib><description>Exploiting the correlations between medical features is essential to the success of healthcare data analysis. However, most existing methods are either suffering large estimation variance for data insufficiency or inflexible in terms of demanding task-specific medical knowledge. In this paper, we propose a novel patient health representation learning framework dubbed SAFARI SAFARI learns a compact representation by imposing a clinical-fact-inspired task-agnostic correlational sparsity prior to the correlations of medical feature pairs. Specifically, we learn the compact representation by solving the bi-level optimization problem, which involves solving the high-level inter-group correlations and the nested lower-level intra-group correlations. We leverage the Laplacian kernel as a robust metric for feature grouping and graph neural networks for solving the bi-level optimization problem following the optimal value reformulation paradigm. Experiments on five datasets of various inputs and tasks demonstrate the efficacy of SAFARI . The discovered findings are also consistent with our insights and medical literature, which can provide valuable clinical explanations.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3230454</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Clinical Risk Prediction ; Correlation ; Covariance matrices ; Data analysis ; Electronic Health Records ; Feature extraction ; Graph neural networks ; Learning ; Medical diagnostic imaging ; Optimization ; Representation learning ; Representations ; Task analysis</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-11, Vol.35 (11), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f065dd63747e59db225bf8fa668d1b0a2858004ba9f95826f714fbcfd8d84df3</citedby><cites>FETCH-LOGICAL-c293t-f065dd63747e59db225bf8fa668d1b0a2858004ba9f95826f714fbcfd8d84df3</cites><orcidid>0000-0002-0247-9866 ; 0000-0003-4574-0830 ; 0000-0002-0181-8379 ; 0000-0002-8026-9688 ; 0000-0002-2263-2979 ; 0000-0002-0520-7196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9992086$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9992086$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ma, Xinyu</creatorcontrib><creatorcontrib>Wang, Yasha</creatorcontrib><creatorcontrib>Chu, Xu</creatorcontrib><creatorcontrib>Ma, Liantao</creatorcontrib><creatorcontrib>Tang, Wen</creatorcontrib><creatorcontrib>Zhao, Junfeng</creatorcontrib><creatorcontrib>Yuan, Ye</creatorcontrib><creatorcontrib>Wang, Guoren</creatorcontrib><title>Patient Health Representation Learning via Correlational Sparse Prior of Medical Features</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Exploiting the correlations between medical features is essential to the success of healthcare data analysis. However, most existing methods are either suffering large estimation variance for data insufficiency or inflexible in terms of demanding task-specific medical knowledge. In this paper, we propose a novel patient health representation learning framework dubbed SAFARI SAFARI learns a compact representation by imposing a clinical-fact-inspired task-agnostic correlational sparsity prior to the correlations of medical feature pairs. Specifically, we learn the compact representation by solving the bi-level optimization problem, which involves solving the high-level inter-group correlations and the nested lower-level intra-group correlations. We leverage the Laplacian kernel as a robust metric for feature grouping and graph neural networks for solving the bi-level optimization problem following the optimal value reformulation paradigm. Experiments on five datasets of various inputs and tasks demonstrate the efficacy of SAFARI . The discovered findings are also consistent with our insights and medical literature, which can provide valuable clinical explanations.</description><subject>Clinical Risk Prediction</subject><subject>Correlation</subject><subject>Covariance matrices</subject><subject>Data analysis</subject><subject>Electronic Health Records</subject><subject>Feature extraction</subject><subject>Graph neural networks</subject><subject>Learning</subject><subject>Medical diagnostic imaging</subject><subject>Optimization</subject><subject>Representation learning</subject><subject>Representations</subject><subject>Task analysis</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqXwAIiLJc4p_k3sIyotRRRRQS-cLCdeQ6qQBDtF4u1xacVpV7Mzo9WH0CUlE0qJvlk_3s0mjDA24YwTIcURGlEpVcaopsdpJ4JmgoviFJ3FuCGEqELREXpb2aGGdsALsM3wgV-gDxCTkOSuxUuwoa3bd_xdWzztQoDm72Ab_NrbEAGvQt0F3Hn8BK6ukj4HO2xTxzk68baJcHGYY7Sez9bTRbZ8vn-Y3i6zimk-ZJ7k0rmcF6IAqV3JmCy98jbPlaMlsUxJRYgorfZaKpb7ggpfVt4pp4TzfIyu97V96L62EAez6bYhPRgNUwWXShIpk4vuXVXoYgzgTR_qTxt-DCVmB9DsAJodQHMAmDJX-0wNAP9-rTUjKue_VRBs0Q</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Ma, Xinyu</creator><creator>Wang, Yasha</creator><creator>Chu, Xu</creator><creator>Ma, Liantao</creator><creator>Tang, Wen</creator><creator>Zhao, Junfeng</creator><creator>Yuan, Ye</creator><creator>Wang, Guoren</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0247-9866</orcidid><orcidid>https://orcid.org/0000-0003-4574-0830</orcidid><orcidid>https://orcid.org/0000-0002-0181-8379</orcidid><orcidid>https://orcid.org/0000-0002-8026-9688</orcidid><orcidid>https://orcid.org/0000-0002-2263-2979</orcidid><orcidid>https://orcid.org/0000-0002-0520-7196</orcidid></search><sort><creationdate>20231101</creationdate><title>Patient Health Representation Learning via Correlational Sparse Prior of Medical Features</title><author>Ma, Xinyu ; Wang, Yasha ; Chu, Xu ; Ma, Liantao ; Tang, Wen ; Zhao, Junfeng ; Yuan, Ye ; Wang, Guoren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f065dd63747e59db225bf8fa668d1b0a2858004ba9f95826f714fbcfd8d84df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Clinical Risk Prediction</topic><topic>Correlation</topic><topic>Covariance matrices</topic><topic>Data analysis</topic><topic>Electronic Health Records</topic><topic>Feature extraction</topic><topic>Graph neural networks</topic><topic>Learning</topic><topic>Medical diagnostic imaging</topic><topic>Optimization</topic><topic>Representation learning</topic><topic>Representations</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Xinyu</creatorcontrib><creatorcontrib>Wang, Yasha</creatorcontrib><creatorcontrib>Chu, Xu</creatorcontrib><creatorcontrib>Ma, Liantao</creatorcontrib><creatorcontrib>Tang, Wen</creatorcontrib><creatorcontrib>Zhao, Junfeng</creatorcontrib><creatorcontrib>Yuan, Ye</creatorcontrib><creatorcontrib>Wang, Guoren</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ma, Xinyu</au><au>Wang, Yasha</au><au>Chu, Xu</au><au>Ma, Liantao</au><au>Tang, Wen</au><au>Zhao, Junfeng</au><au>Yuan, Ye</au><au>Wang, Guoren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patient Health Representation Learning via Correlational Sparse Prior of Medical Features</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>35</volume><issue>11</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Exploiting the correlations between medical features is essential to the success of healthcare data analysis. However, most existing methods are either suffering large estimation variance for data insufficiency or inflexible in terms of demanding task-specific medical knowledge. In this paper, we propose a novel patient health representation learning framework dubbed SAFARI SAFARI learns a compact representation by imposing a clinical-fact-inspired task-agnostic correlational sparsity prior to the correlations of medical feature pairs. Specifically, we learn the compact representation by solving the bi-level optimization problem, which involves solving the high-level inter-group correlations and the nested lower-level intra-group correlations. We leverage the Laplacian kernel as a robust metric for feature grouping and graph neural networks for solving the bi-level optimization problem following the optimal value reformulation paradigm. Experiments on five datasets of various inputs and tasks demonstrate the efficacy of SAFARI . The discovered findings are also consistent with our insights and medical literature, which can provide valuable clinical explanations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3230454</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0247-9866</orcidid><orcidid>https://orcid.org/0000-0003-4574-0830</orcidid><orcidid>https://orcid.org/0000-0002-0181-8379</orcidid><orcidid>https://orcid.org/0000-0002-8026-9688</orcidid><orcidid>https://orcid.org/0000-0002-2263-2979</orcidid><orcidid>https://orcid.org/0000-0002-0520-7196</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2023-11, Vol.35 (11), p.1-14
issn 1041-4347
1558-2191
language eng
recordid cdi_ieee_primary_9992086
source IEEE Electronic Library (IEL)
subjects Clinical Risk Prediction
Correlation
Covariance matrices
Data analysis
Electronic Health Records
Feature extraction
Graph neural networks
Learning
Medical diagnostic imaging
Optimization
Representation learning
Representations
Task analysis
title Patient Health Representation Learning via Correlational Sparse Prior of Medical Features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patient%20Health%20Representation%20Learning%20via%20Correlational%20Sparse%20Prior%20of%20Medical%20Features&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Ma,%20Xinyu&rft.date=2023-11-01&rft.volume=35&rft.issue=11&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3230454&rft_dat=%3Cproquest_RIE%3E2873585055%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873585055&rft_id=info:pmid/&rft_ieee_id=9992086&rfr_iscdi=true