Some results on estimation and modeling of switch transit traffic in a backbone network

Estimating the transit traffic via a node in a communications backbone network such as ATM is an important aspect of the capacity planning in a network. In this paper, we propose a graph theoretic approach to estimate the transit traffic and present results of simulation of switch traffic in a netwo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Devi, B.B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 909
container_issue
container_start_page 905
container_title
container_volume
creator Devi, B.B.
description Estimating the transit traffic via a node in a communications backbone network such as ATM is an important aspect of the capacity planning in a network. In this paper, we propose a graph theoretic approach to estimate the transit traffic and present results of simulation of switch traffic in a network. Modeling is done using graph theoretic methods and traffic on a trunk is estimated using an updated version of the Bellman-Floyd algorithm incorporating the optimal policy matrix derivation. The simulations are run for various random distances, random connectivity between nodes and random traffic patterns. We show that the average ratio of the transit to the originating traffic at any node is directly proportional to the average number of hops in the routes, which in turn is directly proportional to the average degree (average number of trunks at any node) of a node in a network. The simulation results indicate that the transit traffic may be well above one hundred percent of the originating traffic, and this increases with the average ratio of the nodes to the degree of the node.
doi_str_mv 10.1109/ICCCN.1998.998859
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_998859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>998859</ieee_id><sourcerecordid>998859</sourcerecordid><originalsourceid>FETCH-LOGICAL-i174t-a19e6bacb5e75b3062e5f3f13c1b96496f5163d104d7969c0dbe53e2a5788c703</originalsourceid><addsrcrecordid>eNotkFtLxDAQhYMXsK77A_Qpf6A1aZrLPErxsrDog4qPS9pONO62kSay-O-NrAPDdx7mHA5DyCVnFecMrldt2z5WHMBUeY2EI1LUSugSGsGOyTkz3ChgvBEnpMgGWdZMyjOyjPGT5RHQMDAFeXsOI9IZ4_cuRRomijH50SafpZ0GOoYBd356p8HRuPep_6BptlP06Y_O-Z76fEk722-7MCGdMO3DvL0gp87uIi7_uSCvd7cv7UO5frpftTfr0nPdpNJyQJW9nUQtO8FUjdIJx0XPO1ANKCe5EgNnzaBBQc-GDqXA2kptTK-ZWJCrQ65HxM3XnLvPP5vDS8QvObNT3Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Some results on estimation and modeling of switch transit traffic in a backbone network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Devi, B.B.</creator><creatorcontrib>Devi, B.B.</creatorcontrib><description>Estimating the transit traffic via a node in a communications backbone network such as ATM is an important aspect of the capacity planning in a network. In this paper, we propose a graph theoretic approach to estimate the transit traffic and present results of simulation of switch traffic in a network. Modeling is done using graph theoretic methods and traffic on a trunk is estimated using an updated version of the Bellman-Floyd algorithm incorporating the optimal policy matrix derivation. The simulations are run for various random distances, random connectivity between nodes and random traffic patterns. We show that the average ratio of the transit to the originating traffic at any node is directly proportional to the average number of hops in the routes, which in turn is directly proportional to the average degree (average number of trunks at any node) of a node in a network. The simulation results indicate that the transit traffic may be well above one hundred percent of the originating traffic, and this increases with the average ratio of the nodes to the degree of the node.</description><identifier>ISSN: 1095-2055</identifier><identifier>ISBN: 0818690143</identifier><identifier>ISBN: 9780818690143</identifier><identifier>EISSN: 2637-9430</identifier><identifier>DOI: 10.1109/ICCCN.1998.998859</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bones ; Costs ; Intelligent networks ; Neural networks ; Routing ; Spine ; Switches ; Tail ; Telecommunication traffic ; Traffic control</subject><ispartof>Proceedings 7th International Conference on Computer Communications and Networks (Cat. No.98EX226), 1998, p.905-909</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/998859$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4047,4048,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/998859$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Devi, B.B.</creatorcontrib><title>Some results on estimation and modeling of switch transit traffic in a backbone network</title><title>Proceedings 7th International Conference on Computer Communications and Networks (Cat. No.98EX226)</title><addtitle>ICCCN</addtitle><description>Estimating the transit traffic via a node in a communications backbone network such as ATM is an important aspect of the capacity planning in a network. In this paper, we propose a graph theoretic approach to estimate the transit traffic and present results of simulation of switch traffic in a network. Modeling is done using graph theoretic methods and traffic on a trunk is estimated using an updated version of the Bellman-Floyd algorithm incorporating the optimal policy matrix derivation. The simulations are run for various random distances, random connectivity between nodes and random traffic patterns. We show that the average ratio of the transit to the originating traffic at any node is directly proportional to the average number of hops in the routes, which in turn is directly proportional to the average degree (average number of trunks at any node) of a node in a network. The simulation results indicate that the transit traffic may be well above one hundred percent of the originating traffic, and this increases with the average ratio of the nodes to the degree of the node.</description><subject>Bones</subject><subject>Costs</subject><subject>Intelligent networks</subject><subject>Neural networks</subject><subject>Routing</subject><subject>Spine</subject><subject>Switches</subject><subject>Tail</subject><subject>Telecommunication traffic</subject><subject>Traffic control</subject><issn>1095-2055</issn><issn>2637-9430</issn><isbn>0818690143</isbn><isbn>9780818690143</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkFtLxDAQhYMXsK77A_Qpf6A1aZrLPErxsrDog4qPS9pONO62kSay-O-NrAPDdx7mHA5DyCVnFecMrldt2z5WHMBUeY2EI1LUSugSGsGOyTkz3ChgvBEnpMgGWdZMyjOyjPGT5RHQMDAFeXsOI9IZ4_cuRRomijH50SafpZ0GOoYBd356p8HRuPep_6BptlP06Y_O-Z76fEk722-7MCGdMO3DvL0gp87uIi7_uSCvd7cv7UO5frpftTfr0nPdpNJyQJW9nUQtO8FUjdIJx0XPO1ANKCe5EgNnzaBBQc-GDqXA2kptTK-ZWJCrQ65HxM3XnLvPP5vDS8QvObNT3Q</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Devi, B.B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1998</creationdate><title>Some results on estimation and modeling of switch transit traffic in a backbone network</title><author>Devi, B.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i174t-a19e6bacb5e75b3062e5f3f13c1b96496f5163d104d7969c0dbe53e2a5788c703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Bones</topic><topic>Costs</topic><topic>Intelligent networks</topic><topic>Neural networks</topic><topic>Routing</topic><topic>Spine</topic><topic>Switches</topic><topic>Tail</topic><topic>Telecommunication traffic</topic><topic>Traffic control</topic><toplevel>online_resources</toplevel><creatorcontrib>Devi, B.B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Devi, B.B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Some results on estimation and modeling of switch transit traffic in a backbone network</atitle><btitle>Proceedings 7th International Conference on Computer Communications and Networks (Cat. No.98EX226)</btitle><stitle>ICCCN</stitle><date>1998</date><risdate>1998</risdate><spage>905</spage><epage>909</epage><pages>905-909</pages><issn>1095-2055</issn><eissn>2637-9430</eissn><isbn>0818690143</isbn><isbn>9780818690143</isbn><abstract>Estimating the transit traffic via a node in a communications backbone network such as ATM is an important aspect of the capacity planning in a network. In this paper, we propose a graph theoretic approach to estimate the transit traffic and present results of simulation of switch traffic in a network. Modeling is done using graph theoretic methods and traffic on a trunk is estimated using an updated version of the Bellman-Floyd algorithm incorporating the optimal policy matrix derivation. The simulations are run for various random distances, random connectivity between nodes and random traffic patterns. We show that the average ratio of the transit to the originating traffic at any node is directly proportional to the average number of hops in the routes, which in turn is directly proportional to the average degree (average number of trunks at any node) of a node in a network. The simulation results indicate that the transit traffic may be well above one hundred percent of the originating traffic, and this increases with the average ratio of the nodes to the degree of the node.</abstract><pub>IEEE</pub><doi>10.1109/ICCCN.1998.998859</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1095-2055
ispartof Proceedings 7th International Conference on Computer Communications and Networks (Cat. No.98EX226), 1998, p.905-909
issn 1095-2055
2637-9430
language eng
recordid cdi_ieee_primary_998859
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bones
Costs
Intelligent networks
Neural networks
Routing
Spine
Switches
Tail
Telecommunication traffic
Traffic control
title Some results on estimation and modeling of switch transit traffic in a backbone network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T03%3A49%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Some%20results%20on%20estimation%20and%20modeling%20of%20switch%20transit%20traffic%20in%20a%20backbone%20network&rft.btitle=Proceedings%207th%20International%20Conference%20on%20Computer%20Communications%20and%20Networks%20(Cat.%20No.98EX226)&rft.au=Devi,%20B.B.&rft.date=1998&rft.spage=905&rft.epage=909&rft.pages=905-909&rft.issn=1095-2055&rft.eissn=2637-9430&rft.isbn=0818690143&rft.isbn_list=9780818690143&rft_id=info:doi/10.1109/ICCCN.1998.998859&rft_dat=%3Cieee_6IE%3E998859%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=998859&rfr_iscdi=true