MVCNN: A Deep Learning-Based Ocean-Land Waveform Classification Network for Single-Wavelength LiDAR Bathymetry

Ocean-land waveform classification (OLWC) is crucial in airborne LiDAR bathymetry (ALB) data processing and can be used for ocean-land discrimination and waterline extraction. However, the accuracy of OLWC for single-wavelength ALB systems is low given the nature of the green laser waveform in compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2023, Vol.16, p.656-674
Hauptverfasser: Liang, Gang, Zhao, Xinglei, Zhao, Jianhu, Zhou, Fengnian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 674
container_issue
container_start_page 656
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 16
creator Liang, Gang
Zhao, Xinglei
Zhao, Jianhu
Zhou, Fengnian
description Ocean-land waveform classification (OLWC) is crucial in airborne LiDAR bathymetry (ALB) data processing and can be used for ocean-land discrimination and waterline extraction. However, the accuracy of OLWC for single-wavelength ALB systems is low given the nature of the green laser waveform in complex environments. Thus, in this article, a deep learning-based OLWC method called the multichannel voting convolutional neural network (MVCNN) is proposed based on the comprehensive utilization of multichannel green laser waveforms. First, multiple green laser waveforms collected in deep and shallow channels are input into a multichannel input module. Second, a one-dimensional (1-D) convolutional neural network (CNN) structure is proposed to handle each green channel waveform. Finally, a multichannel voting module is introduced to perform majority voting on the predicted categories derived by each 1-D CNN model and output the final waveform category (i.e., ocean or land waveforms). The proposed MVCNN is evaluated using the raw green laser waveforms collected by Optech coastal zone mapping and imaging LiDAR (CZMIL). Results show that the overall accuracy, kappa coefficient, and standard deviation of the overall accuracy for the OLWC utilizing green laser waveforms based on MVCNN can reach 99.41%, 0.9800, and 0.03%, respectively. Results further show that the classification accuracy of the MVCNN is improved gradually with the increase in the number of laser channels. The multichannel voting module can select the correct waveform category from the deep and shallow channels. The proposed MVCNN is highly accurate and robust, and it is slightly affected by aquaculture rafts and the merging effect of green laser waveform in very shallow waters. Thus, the use of MVCNN in OLWC for single-wavelength ALB systems is recommended. In addition, this article explores the relationships between green deep and shallow channel waveforms based on the analysis of CZMIL waveform data.
doi_str_mv 10.1109/JSTARS.2022.3229062
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9984840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9984840</ieee_id><doaj_id>oai_doaj_org_article_cb2416b58c714a75882bbbec54914ce2</doaj_id><sourcerecordid>2758714586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-8b7a547abc332d5d5ccc229c965dea752b8be31d19a0fdb3ae6c4419350a58383</originalsourceid><addsrcrecordid>eNo9kV1P2zAUhqNpk9bBfgE3lnadzp-JvbtS9sEUikSBXVrHzklxlybFCaD--7kL4sqy_TyvffRm2Rmjc8ao-fp7fbu4Wc855XwuODe04O-yGWeK5UwJ9T6bMSNMziSVH7NPw7CliSiNmGXd1f1ytfpGFuQCcU8qhNiFbpOfw4A1ufYIXV5BV5M_8IxNH3dk2cIwhCZ4GEPfkRWOL338S9IdWSezxfyItthtxgdShYvFDTmH8eGwwzEeTrMPDbQDfn5dT7K7H99vl7_y6vrn5XJR5V4IPebalaBkCS5tea1q5b1PY3lTqBqhVNxph4LVzABtaicACy9lmlFRUFpocZJdTrl1D1u7j2EH8WB7CPb_QR83FuIYfIvWOy5Z4ZT2JZMpW2vunEOvpGHSI09ZX6asfewfn3AY7bZ_il36vuUJT5bSRaLERPnYD0PE5u1VRu2xJDuVZI8l2deSknU2WQER3wxjtNSSin_w2o06</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758714586</pqid></control><display><type>article</type><title>MVCNN: A Deep Learning-Based Ocean-Land Waveform Classification Network for Single-Wavelength LiDAR Bathymetry</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liang, Gang ; Zhao, Xinglei ; Zhao, Jianhu ; Zhou, Fengnian</creator><creatorcontrib>Liang, Gang ; Zhao, Xinglei ; Zhao, Jianhu ; Zhou, Fengnian</creatorcontrib><description>Ocean-land waveform classification (OLWC) is crucial in airborne LiDAR bathymetry (ALB) data processing and can be used for ocean-land discrimination and waterline extraction. However, the accuracy of OLWC for single-wavelength ALB systems is low given the nature of the green laser waveform in complex environments. Thus, in this article, a deep learning-based OLWC method called the multichannel voting convolutional neural network (MVCNN) is proposed based on the comprehensive utilization of multichannel green laser waveforms. First, multiple green laser waveforms collected in deep and shallow channels are input into a multichannel input module. Second, a one-dimensional (1-D) convolutional neural network (CNN) structure is proposed to handle each green channel waveform. Finally, a multichannel voting module is introduced to perform majority voting on the predicted categories derived by each 1-D CNN model and output the final waveform category (i.e., ocean or land waveforms). The proposed MVCNN is evaluated using the raw green laser waveforms collected by Optech coastal zone mapping and imaging LiDAR (CZMIL). Results show that the overall accuracy, kappa coefficient, and standard deviation of the overall accuracy for the OLWC utilizing green laser waveforms based on MVCNN can reach 99.41%, 0.9800, and 0.03%, respectively. Results further show that the classification accuracy of the MVCNN is improved gradually with the increase in the number of laser channels. The multichannel voting module can select the correct waveform category from the deep and shallow channels. The proposed MVCNN is highly accurate and robust, and it is slightly affected by aquaculture rafts and the merging effect of green laser waveform in very shallow waters. Thus, the use of MVCNN in OLWC for single-wavelength ALB systems is recommended. In addition, this article explores the relationships between green deep and shallow channel waveforms based on the analysis of CZMIL waveform data.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2022.3229062</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Airborne lidar bathymetry ; Aquaculture ; Artificial neural networks ; Bathymeters ; Bathymetry ; Channels ; Classification ; Coastal zone ; Coastal zones ; Data analysis ; Data processing ; Deep learning ; Green products ; Imaging lidar ; Laser applications ; Laser beams ; Laser modes ; Lasers ; Lidar ; Machine learning ; Measurement by laser beam ; Modules ; multichannel green laser waveforms ; multichannel voting ; Neural networks ; ocean–land waveform classification ; Polyculture (aquaculture) ; Rafting ; Shallow water ; Surface emitting lasers ; Waveforms ; Wavelength</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2023, Vol.16, p.656-674</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-8b7a547abc332d5d5ccc229c965dea752b8be31d19a0fdb3ae6c4419350a58383</citedby><cites>FETCH-LOGICAL-c338t-8b7a547abc332d5d5ccc229c965dea752b8be31d19a0fdb3ae6c4419350a58383</cites><orcidid>0000-0001-8396-4419 ; 0000-0003-3796-8405 ; 0000-0003-1068-1957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,2104,4026,27930,27931,27932</link.rule.ids></links><search><creatorcontrib>Liang, Gang</creatorcontrib><creatorcontrib>Zhao, Xinglei</creatorcontrib><creatorcontrib>Zhao, Jianhu</creatorcontrib><creatorcontrib>Zhou, Fengnian</creatorcontrib><title>MVCNN: A Deep Learning-Based Ocean-Land Waveform Classification Network for Single-Wavelength LiDAR Bathymetry</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Ocean-land waveform classification (OLWC) is crucial in airborne LiDAR bathymetry (ALB) data processing and can be used for ocean-land discrimination and waterline extraction. However, the accuracy of OLWC for single-wavelength ALB systems is low given the nature of the green laser waveform in complex environments. Thus, in this article, a deep learning-based OLWC method called the multichannel voting convolutional neural network (MVCNN) is proposed based on the comprehensive utilization of multichannel green laser waveforms. First, multiple green laser waveforms collected in deep and shallow channels are input into a multichannel input module. Second, a one-dimensional (1-D) convolutional neural network (CNN) structure is proposed to handle each green channel waveform. Finally, a multichannel voting module is introduced to perform majority voting on the predicted categories derived by each 1-D CNN model and output the final waveform category (i.e., ocean or land waveforms). The proposed MVCNN is evaluated using the raw green laser waveforms collected by Optech coastal zone mapping and imaging LiDAR (CZMIL). Results show that the overall accuracy, kappa coefficient, and standard deviation of the overall accuracy for the OLWC utilizing green laser waveforms based on MVCNN can reach 99.41%, 0.9800, and 0.03%, respectively. Results further show that the classification accuracy of the MVCNN is improved gradually with the increase in the number of laser channels. The multichannel voting module can select the correct waveform category from the deep and shallow channels. The proposed MVCNN is highly accurate and robust, and it is slightly affected by aquaculture rafts and the merging effect of green laser waveform in very shallow waters. Thus, the use of MVCNN in OLWC for single-wavelength ALB systems is recommended. In addition, this article explores the relationships between green deep and shallow channel waveforms based on the analysis of CZMIL waveform data.</description><subject>Accuracy</subject><subject>Airborne lidar bathymetry</subject><subject>Aquaculture</subject><subject>Artificial neural networks</subject><subject>Bathymeters</subject><subject>Bathymetry</subject><subject>Channels</subject><subject>Classification</subject><subject>Coastal zone</subject><subject>Coastal zones</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Deep learning</subject><subject>Green products</subject><subject>Imaging lidar</subject><subject>Laser applications</subject><subject>Laser beams</subject><subject>Laser modes</subject><subject>Lasers</subject><subject>Lidar</subject><subject>Machine learning</subject><subject>Measurement by laser beam</subject><subject>Modules</subject><subject>multichannel green laser waveforms</subject><subject>multichannel voting</subject><subject>Neural networks</subject><subject>ocean–land waveform classification</subject><subject>Polyculture (aquaculture)</subject><subject>Rafting</subject><subject>Shallow water</subject><subject>Surface emitting lasers</subject><subject>Waveforms</subject><subject>Wavelength</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kV1P2zAUhqNpk9bBfgE3lnadzp-JvbtS9sEUikSBXVrHzklxlybFCaD--7kL4sqy_TyvffRm2Rmjc8ao-fp7fbu4Wc855XwuODe04O-yGWeK5UwJ9T6bMSNMziSVH7NPw7CliSiNmGXd1f1ytfpGFuQCcU8qhNiFbpOfw4A1ufYIXV5BV5M_8IxNH3dk2cIwhCZ4GEPfkRWOL338S9IdWSezxfyItthtxgdShYvFDTmH8eGwwzEeTrMPDbQDfn5dT7K7H99vl7_y6vrn5XJR5V4IPebalaBkCS5tea1q5b1PY3lTqBqhVNxph4LVzABtaicACy9lmlFRUFpocZJdTrl1D1u7j2EH8WB7CPb_QR83FuIYfIvWOy5Z4ZT2JZMpW2vunEOvpGHSI09ZX6asfewfn3AY7bZ_il36vuUJT5bSRaLERPnYD0PE5u1VRu2xJDuVZI8l2deSknU2WQER3wxjtNSSin_w2o06</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Liang, Gang</creator><creator>Zhao, Xinglei</creator><creator>Zhao, Jianhu</creator><creator>Zhou, Fengnian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8396-4419</orcidid><orcidid>https://orcid.org/0000-0003-3796-8405</orcidid><orcidid>https://orcid.org/0000-0003-1068-1957</orcidid></search><sort><creationdate>2023</creationdate><title>MVCNN: A Deep Learning-Based Ocean-Land Waveform Classification Network for Single-Wavelength LiDAR Bathymetry</title><author>Liang, Gang ; Zhao, Xinglei ; Zhao, Jianhu ; Zhou, Fengnian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-8b7a547abc332d5d5ccc229c965dea752b8be31d19a0fdb3ae6c4419350a58383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Airborne lidar bathymetry</topic><topic>Aquaculture</topic><topic>Artificial neural networks</topic><topic>Bathymeters</topic><topic>Bathymetry</topic><topic>Channels</topic><topic>Classification</topic><topic>Coastal zone</topic><topic>Coastal zones</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Deep learning</topic><topic>Green products</topic><topic>Imaging lidar</topic><topic>Laser applications</topic><topic>Laser beams</topic><topic>Laser modes</topic><topic>Lasers</topic><topic>Lidar</topic><topic>Machine learning</topic><topic>Measurement by laser beam</topic><topic>Modules</topic><topic>multichannel green laser waveforms</topic><topic>multichannel voting</topic><topic>Neural networks</topic><topic>ocean–land waveform classification</topic><topic>Polyculture (aquaculture)</topic><topic>Rafting</topic><topic>Shallow water</topic><topic>Surface emitting lasers</topic><topic>Waveforms</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Gang</creatorcontrib><creatorcontrib>Zhao, Xinglei</creatorcontrib><creatorcontrib>Zhao, Jianhu</creatorcontrib><creatorcontrib>Zhou, Fengnian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Gang</au><au>Zhao, Xinglei</au><au>Zhao, Jianhu</au><au>Zhou, Fengnian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MVCNN: A Deep Learning-Based Ocean-Land Waveform Classification Network for Single-Wavelength LiDAR Bathymetry</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2023</date><risdate>2023</risdate><volume>16</volume><spage>656</spage><epage>674</epage><pages>656-674</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Ocean-land waveform classification (OLWC) is crucial in airborne LiDAR bathymetry (ALB) data processing and can be used for ocean-land discrimination and waterline extraction. However, the accuracy of OLWC for single-wavelength ALB systems is low given the nature of the green laser waveform in complex environments. Thus, in this article, a deep learning-based OLWC method called the multichannel voting convolutional neural network (MVCNN) is proposed based on the comprehensive utilization of multichannel green laser waveforms. First, multiple green laser waveforms collected in deep and shallow channels are input into a multichannel input module. Second, a one-dimensional (1-D) convolutional neural network (CNN) structure is proposed to handle each green channel waveform. Finally, a multichannel voting module is introduced to perform majority voting on the predicted categories derived by each 1-D CNN model and output the final waveform category (i.e., ocean or land waveforms). The proposed MVCNN is evaluated using the raw green laser waveforms collected by Optech coastal zone mapping and imaging LiDAR (CZMIL). Results show that the overall accuracy, kappa coefficient, and standard deviation of the overall accuracy for the OLWC utilizing green laser waveforms based on MVCNN can reach 99.41%, 0.9800, and 0.03%, respectively. Results further show that the classification accuracy of the MVCNN is improved gradually with the increase in the number of laser channels. The multichannel voting module can select the correct waveform category from the deep and shallow channels. The proposed MVCNN is highly accurate and robust, and it is slightly affected by aquaculture rafts and the merging effect of green laser waveform in very shallow waters. Thus, the use of MVCNN in OLWC for single-wavelength ALB systems is recommended. In addition, this article explores the relationships between green deep and shallow channel waveforms based on the analysis of CZMIL waveform data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2022.3229062</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8396-4419</orcidid><orcidid>https://orcid.org/0000-0003-3796-8405</orcidid><orcidid>https://orcid.org/0000-0003-1068-1957</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2023, Vol.16, p.656-674
issn 1939-1404
2151-1535
language eng
recordid cdi_ieee_primary_9984840
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Airborne lidar bathymetry
Aquaculture
Artificial neural networks
Bathymeters
Bathymetry
Channels
Classification
Coastal zone
Coastal zones
Data analysis
Data processing
Deep learning
Green products
Imaging lidar
Laser applications
Laser beams
Laser modes
Lasers
Lidar
Machine learning
Measurement by laser beam
Modules
multichannel green laser waveforms
multichannel voting
Neural networks
ocean–land waveform classification
Polyculture (aquaculture)
Rafting
Shallow water
Surface emitting lasers
Waveforms
Wavelength
title MVCNN: A Deep Learning-Based Ocean-Land Waveform Classification Network for Single-Wavelength LiDAR Bathymetry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T21%3A54%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MVCNN:%20A%20Deep%20Learning-Based%20Ocean-Land%20Waveform%20Classification%20Network%20for%20Single-Wavelength%20LiDAR%20Bathymetry&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Liang,%20Gang&rft.date=2023&rft.volume=16&rft.spage=656&rft.epage=674&rft.pages=656-674&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2022.3229062&rft_dat=%3Cproquest_ieee_%3E2758714586%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758714586&rft_id=info:pmid/&rft_ieee_id=9984840&rft_doaj_id=oai_doaj_org_article_cb2416b58c714a75882bbbec54914ce2&rfr_iscdi=true