Improving the Generalization of Deep Neural Networks in Seismic Resolution Enhancement
Seismic resolution enhancement is a key step for subsurface structure characterization. Although many have proposed the use of deep learning (DL) for resolution enhancement, these are typically hindered by the limitations in the application of synthetically trained networks onto real datasets. Domai...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2023, Vol.20, p.1-5 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 20 |
creator | Zhang, Haoran Alkhalifah, Tariq Liu, Yang Birnie, Claire Di, Xi |
description | Seismic resolution enhancement is a key step for subsurface structure characterization. Although many have proposed the use of deep learning (DL) for resolution enhancement, these are typically hindered by the limitations in the application of synthetically trained networks onto real datasets. Domain adaptation (DA) offers an approach to reduce this disparity between training and inference data, aiming through the application of data transformations to bring the distributions of both data closer to each other. We propose a simple DA procedure, termed MLReal-Lite (the light version of the earlier introduced MLReal), that mainly relies on linear operations, namely convolution and correlation; these transformations introduce aspects of the field data into the synthetic data prior to training, and vice-versa with regard to the inference stage. Taking 1-D and 2-D resolution enhancement tasks as examples, we show how the inclusion of MLReal-Lite improves the performance of neural networks. Not only do the results demonstrate notable improvements in seismic resolution, they also exhibit a higher signal-to-noise ratio (SNR) and better continuity of events, in comparison to the tests without MLReal-Lite. Finally, while illustrated on a resolution enhancement task, our proposed methodology is applicable for any seismic data of dimensions N-D, offering a DA applicable from well ties through to 3-D seismic volumes, and beyond. |
doi_str_mv | 10.1109/LGRS.2022.3229167 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9984665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9984665</ieee_id><sourcerecordid>2773455796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-4c676727cbea1bb003914084ba9a108bb023e52ea785f311581b0ab59e5b1e5e3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NyZP02TPMrc5mAobCq-hbTcusw1nUmr6Ke3dcOnczn8zr3cg9AlJSNKib5ZzJarESOMjThjmmbyCA2oECohQtLjfk5FIrR6PUVnMW4IYalScoBe5tUu1J_Ov-FmDXgGHoLduh_buNrjusR3ADv8AG3ndtJ81eE9YufxClysXIGXEOtt-0dP_Nr6AirwzTk6Ke02wsVBh-h5Onka3yeLx9l8fLtICqZ5k6RFJjPJZJGDpXlOCNc0JSrNrbaUqM5hHAQDK5UoOaVC0ZzYXGgQOQUBfIiu93u7Jz5aiI3Z1G3w3UnDpOSpEFJnHUX3VBHqGAOUZhdcZcO3ocT09Zm-PtPXZw71dZmrfcYBwD-vtUqzTPBfb75r8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773455796</pqid></control><display><type>article</type><title>Improving the Generalization of Deep Neural Networks in Seismic Resolution Enhancement</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Haoran ; Alkhalifah, Tariq ; Liu, Yang ; Birnie, Claire ; Di, Xi</creator><creatorcontrib>Zhang, Haoran ; Alkhalifah, Tariq ; Liu, Yang ; Birnie, Claire ; Di, Xi</creatorcontrib><description>Seismic resolution enhancement is a key step for subsurface structure characterization. Although many have proposed the use of deep learning (DL) for resolution enhancement, these are typically hindered by the limitations in the application of synthetically trained networks onto real datasets. Domain adaptation (DA) offers an approach to reduce this disparity between training and inference data, aiming through the application of data transformations to bring the distributions of both data closer to each other. We propose a simple DA procedure, termed MLReal-Lite (the light version of the earlier introduced MLReal), that mainly relies on linear operations, namely convolution and correlation; these transformations introduce aspects of the field data into the synthetic data prior to training, and vice-versa with regard to the inference stage. Taking 1-D and 2-D resolution enhancement tasks as examples, we show how the inclusion of MLReal-Lite improves the performance of neural networks. Not only do the results demonstrate notable improvements in seismic resolution, they also exhibit a higher signal-to-noise ratio (SNR) and better continuity of events, in comparison to the tests without MLReal-Lite. Finally, while illustrated on a resolution enhancement task, our proposed methodology is applicable for any seismic data of dimensions N-D, offering a DA applicable from well ties through to 3-D seismic volumes, and beyond.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2022.3229167</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Convolution ; Deep learning ; Deep learning (DL) ; Dimensions ; domain adaptation (DA) ; Frequency-domain analysis ; high resolution ; Inference ; Machine learning ; MLReal ; Neural networks ; Petroleum ; Resolution ; Seismic activity ; Seismic data ; seismic resolution enhancement ; Seismological data ; Signal resolution ; Signal to noise ratio ; Structural analysis ; Synthetic data ; Training ; Transformations (mathematics)</subject><ispartof>IEEE geoscience and remote sensing letters, 2023, Vol.20, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-4c676727cbea1bb003914084ba9a108bb023e52ea785f311581b0ab59e5b1e5e3</citedby><cites>FETCH-LOGICAL-c293t-4c676727cbea1bb003914084ba9a108bb023e52ea785f311581b0ab59e5b1e5e3</cites><orcidid>0000-0001-9786-2093 ; 0000-0002-2039-7901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9984665$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9984665$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Haoran</creatorcontrib><creatorcontrib>Alkhalifah, Tariq</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Birnie, Claire</creatorcontrib><creatorcontrib>Di, Xi</creatorcontrib><title>Improving the Generalization of Deep Neural Networks in Seismic Resolution Enhancement</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Seismic resolution enhancement is a key step for subsurface structure characterization. Although many have proposed the use of deep learning (DL) for resolution enhancement, these are typically hindered by the limitations in the application of synthetically trained networks onto real datasets. Domain adaptation (DA) offers an approach to reduce this disparity between training and inference data, aiming through the application of data transformations to bring the distributions of both data closer to each other. We propose a simple DA procedure, termed MLReal-Lite (the light version of the earlier introduced MLReal), that mainly relies on linear operations, namely convolution and correlation; these transformations introduce aspects of the field data into the synthetic data prior to training, and vice-versa with regard to the inference stage. Taking 1-D and 2-D resolution enhancement tasks as examples, we show how the inclusion of MLReal-Lite improves the performance of neural networks. Not only do the results demonstrate notable improvements in seismic resolution, they also exhibit a higher signal-to-noise ratio (SNR) and better continuity of events, in comparison to the tests without MLReal-Lite. Finally, while illustrated on a resolution enhancement task, our proposed methodology is applicable for any seismic data of dimensions N-D, offering a DA applicable from well ties through to 3-D seismic volumes, and beyond.</description><subject>Artificial neural networks</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Deep learning (DL)</subject><subject>Dimensions</subject><subject>domain adaptation (DA)</subject><subject>Frequency-domain analysis</subject><subject>high resolution</subject><subject>Inference</subject><subject>Machine learning</subject><subject>MLReal</subject><subject>Neural networks</subject><subject>Petroleum</subject><subject>Resolution</subject><subject>Seismic activity</subject><subject>Seismic data</subject><subject>seismic resolution enhancement</subject><subject>Seismological data</subject><subject>Signal resolution</subject><subject>Signal to noise ratio</subject><subject>Structural analysis</subject><subject>Synthetic data</subject><subject>Training</subject><subject>Transformations (mathematics)</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NyZP02TPMrc5mAobCq-hbTcusw1nUmr6Ke3dcOnczn8zr3cg9AlJSNKib5ZzJarESOMjThjmmbyCA2oECohQtLjfk5FIrR6PUVnMW4IYalScoBe5tUu1J_Ov-FmDXgGHoLduh_buNrjusR3ADv8AG3ndtJ81eE9YufxClysXIGXEOtt-0dP_Nr6AirwzTk6Ke02wsVBh-h5Onka3yeLx9l8fLtICqZ5k6RFJjPJZJGDpXlOCNc0JSrNrbaUqM5hHAQDK5UoOaVC0ZzYXGgQOQUBfIiu93u7Jz5aiI3Z1G3w3UnDpOSpEFJnHUX3VBHqGAOUZhdcZcO3ocT09Zm-PtPXZw71dZmrfcYBwD-vtUqzTPBfb75r8A</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Zhang, Haoran</creator><creator>Alkhalifah, Tariq</creator><creator>Liu, Yang</creator><creator>Birnie, Claire</creator><creator>Di, Xi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9786-2093</orcidid><orcidid>https://orcid.org/0000-0002-2039-7901</orcidid></search><sort><creationdate>2023</creationdate><title>Improving the Generalization of Deep Neural Networks in Seismic Resolution Enhancement</title><author>Zhang, Haoran ; Alkhalifah, Tariq ; Liu, Yang ; Birnie, Claire ; Di, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-4c676727cbea1bb003914084ba9a108bb023e52ea785f311581b0ab59e5b1e5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Deep learning (DL)</topic><topic>Dimensions</topic><topic>domain adaptation (DA)</topic><topic>Frequency-domain analysis</topic><topic>high resolution</topic><topic>Inference</topic><topic>Machine learning</topic><topic>MLReal</topic><topic>Neural networks</topic><topic>Petroleum</topic><topic>Resolution</topic><topic>Seismic activity</topic><topic>Seismic data</topic><topic>seismic resolution enhancement</topic><topic>Seismological data</topic><topic>Signal resolution</topic><topic>Signal to noise ratio</topic><topic>Structural analysis</topic><topic>Synthetic data</topic><topic>Training</topic><topic>Transformations (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haoran</creatorcontrib><creatorcontrib>Alkhalifah, Tariq</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Birnie, Claire</creatorcontrib><creatorcontrib>Di, Xi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Haoran</au><au>Alkhalifah, Tariq</au><au>Liu, Yang</au><au>Birnie, Claire</au><au>Di, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the Generalization of Deep Neural Networks in Seismic Resolution Enhancement</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2023</date><risdate>2023</risdate><volume>20</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Seismic resolution enhancement is a key step for subsurface structure characterization. Although many have proposed the use of deep learning (DL) for resolution enhancement, these are typically hindered by the limitations in the application of synthetically trained networks onto real datasets. Domain adaptation (DA) offers an approach to reduce this disparity between training and inference data, aiming through the application of data transformations to bring the distributions of both data closer to each other. We propose a simple DA procedure, termed MLReal-Lite (the light version of the earlier introduced MLReal), that mainly relies on linear operations, namely convolution and correlation; these transformations introduce aspects of the field data into the synthetic data prior to training, and vice-versa with regard to the inference stage. Taking 1-D and 2-D resolution enhancement tasks as examples, we show how the inclusion of MLReal-Lite improves the performance of neural networks. Not only do the results demonstrate notable improvements in seismic resolution, they also exhibit a higher signal-to-noise ratio (SNR) and better continuity of events, in comparison to the tests without MLReal-Lite. Finally, while illustrated on a resolution enhancement task, our proposed methodology is applicable for any seismic data of dimensions N-D, offering a DA applicable from well ties through to 3-D seismic volumes, and beyond.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2022.3229167</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9786-2093</orcidid><orcidid>https://orcid.org/0000-0002-2039-7901</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2023, Vol.20, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_9984665 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Convolution Deep learning Deep learning (DL) Dimensions domain adaptation (DA) Frequency-domain analysis high resolution Inference Machine learning MLReal Neural networks Petroleum Resolution Seismic activity Seismic data seismic resolution enhancement Seismological data Signal resolution Signal to noise ratio Structural analysis Synthetic data Training Transformations (mathematics) |
title | Improving the Generalization of Deep Neural Networks in Seismic Resolution Enhancement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20Generalization%20of%20Deep%20Neural%20Networks%20in%20Seismic%20Resolution%20Enhancement&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Zhang,%20Haoran&rft.date=2023&rft.volume=20&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2022.3229167&rft_dat=%3Cproquest_RIE%3E2773455796%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773455796&rft_id=info:pmid/&rft_ieee_id=9984665&rfr_iscdi=true |