Improving the Generalization of Deep Neural Networks in Seismic Resolution Enhancement

Seismic resolution enhancement is a key step for subsurface structure characterization. Although many have proposed the use of deep learning (DL) for resolution enhancement, these are typically hindered by the limitations in the application of synthetically trained networks onto real datasets. Domai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2023, Vol.20, p.1-5
Hauptverfasser: Zhang, Haoran, Alkhalifah, Tariq, Liu, Yang, Birnie, Claire, Di, Xi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 20
creator Zhang, Haoran
Alkhalifah, Tariq
Liu, Yang
Birnie, Claire
Di, Xi
description Seismic resolution enhancement is a key step for subsurface structure characterization. Although many have proposed the use of deep learning (DL) for resolution enhancement, these are typically hindered by the limitations in the application of synthetically trained networks onto real datasets. Domain adaptation (DA) offers an approach to reduce this disparity between training and inference data, aiming through the application of data transformations to bring the distributions of both data closer to each other. We propose a simple DA procedure, termed MLReal-Lite (the light version of the earlier introduced MLReal), that mainly relies on linear operations, namely convolution and correlation; these transformations introduce aspects of the field data into the synthetic data prior to training, and vice-versa with regard to the inference stage. Taking 1-D and 2-D resolution enhancement tasks as examples, we show how the inclusion of MLReal-Lite improves the performance of neural networks. Not only do the results demonstrate notable improvements in seismic resolution, they also exhibit a higher signal-to-noise ratio (SNR) and better continuity of events, in comparison to the tests without MLReal-Lite. Finally, while illustrated on a resolution enhancement task, our proposed methodology is applicable for any seismic data of dimensions N-D, offering a DA applicable from well ties through to 3-D seismic volumes, and beyond.
doi_str_mv 10.1109/LGRS.2022.3229167
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9984665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9984665</ieee_id><sourcerecordid>2773455796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-4c676727cbea1bb003914084ba9a108bb023e52ea785f311581b0ab59e5b1e5e3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NyZP02TPMrc5mAobCq-hbTcusw1nUmr6Ke3dcOnczn8zr3cg9AlJSNKib5ZzJarESOMjThjmmbyCA2oECohQtLjfk5FIrR6PUVnMW4IYalScoBe5tUu1J_Ov-FmDXgGHoLduh_buNrjusR3ADv8AG3ndtJ81eE9YufxClysXIGXEOtt-0dP_Nr6AirwzTk6Ke02wsVBh-h5Onka3yeLx9l8fLtICqZ5k6RFJjPJZJGDpXlOCNc0JSrNrbaUqM5hHAQDK5UoOaVC0ZzYXGgQOQUBfIiu93u7Jz5aiI3Z1G3w3UnDpOSpEFJnHUX3VBHqGAOUZhdcZcO3ocT09Zm-PtPXZw71dZmrfcYBwD-vtUqzTPBfb75r8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773455796</pqid></control><display><type>article</type><title>Improving the Generalization of Deep Neural Networks in Seismic Resolution Enhancement</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Haoran ; Alkhalifah, Tariq ; Liu, Yang ; Birnie, Claire ; Di, Xi</creator><creatorcontrib>Zhang, Haoran ; Alkhalifah, Tariq ; Liu, Yang ; Birnie, Claire ; Di, Xi</creatorcontrib><description>Seismic resolution enhancement is a key step for subsurface structure characterization. Although many have proposed the use of deep learning (DL) for resolution enhancement, these are typically hindered by the limitations in the application of synthetically trained networks onto real datasets. Domain adaptation (DA) offers an approach to reduce this disparity between training and inference data, aiming through the application of data transformations to bring the distributions of both data closer to each other. We propose a simple DA procedure, termed MLReal-Lite (the light version of the earlier introduced MLReal), that mainly relies on linear operations, namely convolution and correlation; these transformations introduce aspects of the field data into the synthetic data prior to training, and vice-versa with regard to the inference stage. Taking 1-D and 2-D resolution enhancement tasks as examples, we show how the inclusion of MLReal-Lite improves the performance of neural networks. Not only do the results demonstrate notable improvements in seismic resolution, they also exhibit a higher signal-to-noise ratio (SNR) and better continuity of events, in comparison to the tests without MLReal-Lite. Finally, while illustrated on a resolution enhancement task, our proposed methodology is applicable for any seismic data of dimensions N-D, offering a DA applicable from well ties through to 3-D seismic volumes, and beyond.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2022.3229167</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Convolution ; Deep learning ; Deep learning (DL) ; Dimensions ; domain adaptation (DA) ; Frequency-domain analysis ; high resolution ; Inference ; Machine learning ; MLReal ; Neural networks ; Petroleum ; Resolution ; Seismic activity ; Seismic data ; seismic resolution enhancement ; Seismological data ; Signal resolution ; Signal to noise ratio ; Structural analysis ; Synthetic data ; Training ; Transformations (mathematics)</subject><ispartof>IEEE geoscience and remote sensing letters, 2023, Vol.20, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-4c676727cbea1bb003914084ba9a108bb023e52ea785f311581b0ab59e5b1e5e3</citedby><cites>FETCH-LOGICAL-c293t-4c676727cbea1bb003914084ba9a108bb023e52ea785f311581b0ab59e5b1e5e3</cites><orcidid>0000-0001-9786-2093 ; 0000-0002-2039-7901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9984665$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9984665$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Haoran</creatorcontrib><creatorcontrib>Alkhalifah, Tariq</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Birnie, Claire</creatorcontrib><creatorcontrib>Di, Xi</creatorcontrib><title>Improving the Generalization of Deep Neural Networks in Seismic Resolution Enhancement</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Seismic resolution enhancement is a key step for subsurface structure characterization. Although many have proposed the use of deep learning (DL) for resolution enhancement, these are typically hindered by the limitations in the application of synthetically trained networks onto real datasets. Domain adaptation (DA) offers an approach to reduce this disparity between training and inference data, aiming through the application of data transformations to bring the distributions of both data closer to each other. We propose a simple DA procedure, termed MLReal-Lite (the light version of the earlier introduced MLReal), that mainly relies on linear operations, namely convolution and correlation; these transformations introduce aspects of the field data into the synthetic data prior to training, and vice-versa with regard to the inference stage. Taking 1-D and 2-D resolution enhancement tasks as examples, we show how the inclusion of MLReal-Lite improves the performance of neural networks. Not only do the results demonstrate notable improvements in seismic resolution, they also exhibit a higher signal-to-noise ratio (SNR) and better continuity of events, in comparison to the tests without MLReal-Lite. Finally, while illustrated on a resolution enhancement task, our proposed methodology is applicable for any seismic data of dimensions N-D, offering a DA applicable from well ties through to 3-D seismic volumes, and beyond.</description><subject>Artificial neural networks</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Deep learning (DL)</subject><subject>Dimensions</subject><subject>domain adaptation (DA)</subject><subject>Frequency-domain analysis</subject><subject>high resolution</subject><subject>Inference</subject><subject>Machine learning</subject><subject>MLReal</subject><subject>Neural networks</subject><subject>Petroleum</subject><subject>Resolution</subject><subject>Seismic activity</subject><subject>Seismic data</subject><subject>seismic resolution enhancement</subject><subject>Seismological data</subject><subject>Signal resolution</subject><subject>Signal to noise ratio</subject><subject>Structural analysis</subject><subject>Synthetic data</subject><subject>Training</subject><subject>Transformations (mathematics)</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NyZP02TPMrc5mAobCq-hbTcusw1nUmr6Ke3dcOnczn8zr3cg9AlJSNKib5ZzJarESOMjThjmmbyCA2oECohQtLjfk5FIrR6PUVnMW4IYalScoBe5tUu1J_Ov-FmDXgGHoLduh_buNrjusR3ADv8AG3ndtJ81eE9YufxClysXIGXEOtt-0dP_Nr6AirwzTk6Ke02wsVBh-h5Onka3yeLx9l8fLtICqZ5k6RFJjPJZJGDpXlOCNc0JSrNrbaUqM5hHAQDK5UoOaVC0ZzYXGgQOQUBfIiu93u7Jz5aiI3Z1G3w3UnDpOSpEFJnHUX3VBHqGAOUZhdcZcO3ocT09Zm-PtPXZw71dZmrfcYBwD-vtUqzTPBfb75r8A</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Zhang, Haoran</creator><creator>Alkhalifah, Tariq</creator><creator>Liu, Yang</creator><creator>Birnie, Claire</creator><creator>Di, Xi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9786-2093</orcidid><orcidid>https://orcid.org/0000-0002-2039-7901</orcidid></search><sort><creationdate>2023</creationdate><title>Improving the Generalization of Deep Neural Networks in Seismic Resolution Enhancement</title><author>Zhang, Haoran ; Alkhalifah, Tariq ; Liu, Yang ; Birnie, Claire ; Di, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-4c676727cbea1bb003914084ba9a108bb023e52ea785f311581b0ab59e5b1e5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Deep learning (DL)</topic><topic>Dimensions</topic><topic>domain adaptation (DA)</topic><topic>Frequency-domain analysis</topic><topic>high resolution</topic><topic>Inference</topic><topic>Machine learning</topic><topic>MLReal</topic><topic>Neural networks</topic><topic>Petroleum</topic><topic>Resolution</topic><topic>Seismic activity</topic><topic>Seismic data</topic><topic>seismic resolution enhancement</topic><topic>Seismological data</topic><topic>Signal resolution</topic><topic>Signal to noise ratio</topic><topic>Structural analysis</topic><topic>Synthetic data</topic><topic>Training</topic><topic>Transformations (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haoran</creatorcontrib><creatorcontrib>Alkhalifah, Tariq</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Birnie, Claire</creatorcontrib><creatorcontrib>Di, Xi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Haoran</au><au>Alkhalifah, Tariq</au><au>Liu, Yang</au><au>Birnie, Claire</au><au>Di, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the Generalization of Deep Neural Networks in Seismic Resolution Enhancement</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2023</date><risdate>2023</risdate><volume>20</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Seismic resolution enhancement is a key step for subsurface structure characterization. Although many have proposed the use of deep learning (DL) for resolution enhancement, these are typically hindered by the limitations in the application of synthetically trained networks onto real datasets. Domain adaptation (DA) offers an approach to reduce this disparity between training and inference data, aiming through the application of data transformations to bring the distributions of both data closer to each other. We propose a simple DA procedure, termed MLReal-Lite (the light version of the earlier introduced MLReal), that mainly relies on linear operations, namely convolution and correlation; these transformations introduce aspects of the field data into the synthetic data prior to training, and vice-versa with regard to the inference stage. Taking 1-D and 2-D resolution enhancement tasks as examples, we show how the inclusion of MLReal-Lite improves the performance of neural networks. Not only do the results demonstrate notable improvements in seismic resolution, they also exhibit a higher signal-to-noise ratio (SNR) and better continuity of events, in comparison to the tests without MLReal-Lite. Finally, while illustrated on a resolution enhancement task, our proposed methodology is applicable for any seismic data of dimensions N-D, offering a DA applicable from well ties through to 3-D seismic volumes, and beyond.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2022.3229167</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9786-2093</orcidid><orcidid>https://orcid.org/0000-0002-2039-7901</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2023, Vol.20, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_9984665
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Convolution
Deep learning
Deep learning (DL)
Dimensions
domain adaptation (DA)
Frequency-domain analysis
high resolution
Inference
Machine learning
MLReal
Neural networks
Petroleum
Resolution
Seismic activity
Seismic data
seismic resolution enhancement
Seismological data
Signal resolution
Signal to noise ratio
Structural analysis
Synthetic data
Training
Transformations (mathematics)
title Improving the Generalization of Deep Neural Networks in Seismic Resolution Enhancement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20Generalization%20of%20Deep%20Neural%20Networks%20in%20Seismic%20Resolution%20Enhancement&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Zhang,%20Haoran&rft.date=2023&rft.volume=20&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2022.3229167&rft_dat=%3Cproquest_RIE%3E2773455796%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773455796&rft_id=info:pmid/&rft_ieee_id=9984665&rfr_iscdi=true