Affective Knowledge Augmented Interactive Graph Convolutional Network for Chinese-Oriented Aspect-Based Sentiment Analysis

Aspect-based sentiment analysis(ABSA) aims to identify the sentiment polarity of specific aspects in sentences, which can more accurately mine the sentiment polarity of users towards different aspects. Most of the existing works derive the sentiment features of specific aspects by interactively lear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.130686-130698
Hauptverfasser: Yang, Qian, Kadeer, Zaokere, Gu, Wenxia, Sun, Weiwei, Wumaier, Aishan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 130698
container_issue
container_start_page 130686
container_title IEEE access
container_volume 10
creator Yang, Qian
Kadeer, Zaokere
Gu, Wenxia
Sun, Weiwei
Wumaier, Aishan
description Aspect-based sentiment analysis(ABSA) aims to identify the sentiment polarity of specific aspects in sentences, which can more accurately mine the sentiment polarity of users towards different aspects. Most of the existing works derive the sentiment features of specific aspects by interactively learning the dependencies between different aspects of the context. However, the above work has neglected to use the external affective commonsense knowledge to augment the ability of the Graph Convolutional Networks(GCNs) to interactively capture sentiment dependencies of the inter-aspect words in different contexts. In addition, compared to the ABSA research in English, the existing research pays less attention to the Chinese-oriented research. Meanwhile, multi-head self-sttention(MHSA) is applied to extract richer context syntax and semantic interaction features. In this paper, we propose a novel knowledge-aware model in which affective knowledge augments interactive GCN for Chinese-oriented ABSA, namely AKM-IGCN. Moreover, this model can be applied to effectively analyze both Chinese and English comments simultaneously. Hence, we conducted experiments on four Chinese datasets(Camera, Phone, Notebook and Car) and six English benchmark datasets(Restaurant14, Restaurant15, Restaurant16, Twitter, MAMS, Tshirt). Experimental results illustrate that our proposed model outperforms or approaches state-of-the-art models.
doi_str_mv 10.1109/ACCESS.2022.3228299
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9980354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9980354</ieee_id><doaj_id>oai_doaj_org_article_7abbdc169fa340f1976afbd3044f5e5d</doaj_id><sourcerecordid>2756561845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d0374b9f867929ad3b3fb3c0d1cbf0a53e57113149d4eb331c370f3904c373143</originalsourceid><addsrcrecordid>eNpNkVFP5CAUhRvjJmtcf4EvTXzuCFxoy2NtXJ1o9GF2nwktl5GxllnoONFfL7M1Rh7gcrjfIXCy7JySBaVEXjZte71aLRhhbAGM1UzKo-yE0VIWIKA8_lb_zM5i3JA06iSJ6iR7b6zFfnKvmN-Nfj-gWWPe7NYvOE5o8mWag57Pb4LePuWtH1_9sJucH_WQP-C09-E5tz7k7ZMbMWLxGNwMN3GbrIsrHdNmlTR3cM2bBL5FF39lP6weIp59rqfZ39_Xf9rb4v7xZtk290XPST0VhkDFO2nrspJMagMd2A56YmjfWaIFoKgoBcql4dgB0B4qYkESnookw2m2nH2N1xu1De5FhzfltVP_BR_WSofJ9QOqSned6dPXWA2cWCqrUtvOAOHcChQmeV3MXtvg_-0wTmrjdyE9KCpWiVKUtOYidcHc1QcfY0D7dSsl6pCZmjNTh8zUZ2aJOp8ph4hfhJQ1AcHhA7mMk-c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756561845</pqid></control><display><type>article</type><title>Affective Knowledge Augmented Interactive Graph Convolutional Network for Chinese-Oriented Aspect-Based Sentiment Analysis</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yang, Qian ; Kadeer, Zaokere ; Gu, Wenxia ; Sun, Weiwei ; Wumaier, Aishan</creator><creatorcontrib>Yang, Qian ; Kadeer, Zaokere ; Gu, Wenxia ; Sun, Weiwei ; Wumaier, Aishan</creatorcontrib><description>Aspect-based sentiment analysis(ABSA) aims to identify the sentiment polarity of specific aspects in sentences, which can more accurately mine the sentiment polarity of users towards different aspects. Most of the existing works derive the sentiment features of specific aspects by interactively learning the dependencies between different aspects of the context. However, the above work has neglected to use the external affective commonsense knowledge to augment the ability of the Graph Convolutional Networks(GCNs) to interactively capture sentiment dependencies of the inter-aspect words in different contexts. In addition, compared to the ABSA research in English, the existing research pays less attention to the Chinese-oriented research. Meanwhile, multi-head self-sttention(MHSA) is applied to extract richer context syntax and semantic interaction features. In this paper, we propose a novel knowledge-aware model in which affective knowledge augments interactive GCN for Chinese-oriented ABSA, namely AKM-IGCN. Moreover, this model can be applied to effectively analyze both Chinese and English comments simultaneously. Hence, we conducted experiments on four Chinese datasets(Camera, Phone, Notebook and Car) and six English benchmark datasets(Restaurant14, Restaurant15, Restaurant16, Twitter, MAMS, Tshirt). Experimental results illustrate that our proposed model outperforms or approaches state-of-the-art models.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3228299</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Aspect-based sentiment analysis ; China ; Chinese sentiment analysis ; Commonsense reasoning ; Context ; Convolutional neural networks ; Data mining ; Datasets ; external affective knowledge ; Feature extraction ; graph convolutional networks ; Graph neural networks ; multi-head self-attention ; Semantics ; Sentences ; Sentiment analysis ; Syntactics</subject><ispartof>IEEE access, 2022, Vol.10, p.130686-130698</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d0374b9f867929ad3b3fb3c0d1cbf0a53e57113149d4eb331c370f3904c373143</citedby><cites>FETCH-LOGICAL-c408t-d0374b9f867929ad3b3fb3c0d1cbf0a53e57113149d4eb331c370f3904c373143</cites><orcidid>0000-0003-1681-1089 ; 0000-0001-9165-7312 ; 0000-0001-9475-1101 ; 0000-0001-6653-4994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9980354$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Yang, Qian</creatorcontrib><creatorcontrib>Kadeer, Zaokere</creatorcontrib><creatorcontrib>Gu, Wenxia</creatorcontrib><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Wumaier, Aishan</creatorcontrib><title>Affective Knowledge Augmented Interactive Graph Convolutional Network for Chinese-Oriented Aspect-Based Sentiment Analysis</title><title>IEEE access</title><addtitle>Access</addtitle><description>Aspect-based sentiment analysis(ABSA) aims to identify the sentiment polarity of specific aspects in sentences, which can more accurately mine the sentiment polarity of users towards different aspects. Most of the existing works derive the sentiment features of specific aspects by interactively learning the dependencies between different aspects of the context. However, the above work has neglected to use the external affective commonsense knowledge to augment the ability of the Graph Convolutional Networks(GCNs) to interactively capture sentiment dependencies of the inter-aspect words in different contexts. In addition, compared to the ABSA research in English, the existing research pays less attention to the Chinese-oriented research. Meanwhile, multi-head self-sttention(MHSA) is applied to extract richer context syntax and semantic interaction features. In this paper, we propose a novel knowledge-aware model in which affective knowledge augments interactive GCN for Chinese-oriented ABSA, namely AKM-IGCN. Moreover, this model can be applied to effectively analyze both Chinese and English comments simultaneously. Hence, we conducted experiments on four Chinese datasets(Camera, Phone, Notebook and Car) and six English benchmark datasets(Restaurant14, Restaurant15, Restaurant16, Twitter, MAMS, Tshirt). Experimental results illustrate that our proposed model outperforms or approaches state-of-the-art models.</description><subject>Artificial neural networks</subject><subject>Aspect-based sentiment analysis</subject><subject>China</subject><subject>Chinese sentiment analysis</subject><subject>Commonsense reasoning</subject><subject>Context</subject><subject>Convolutional neural networks</subject><subject>Data mining</subject><subject>Datasets</subject><subject>external affective knowledge</subject><subject>Feature extraction</subject><subject>graph convolutional networks</subject><subject>Graph neural networks</subject><subject>multi-head self-attention</subject><subject>Semantics</subject><subject>Sentences</subject><subject>Sentiment analysis</subject><subject>Syntactics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFP5CAUhRvjJmtcf4EvTXzuCFxoy2NtXJ1o9GF2nwktl5GxllnoONFfL7M1Rh7gcrjfIXCy7JySBaVEXjZte71aLRhhbAGM1UzKo-yE0VIWIKA8_lb_zM5i3JA06iSJ6iR7b6zFfnKvmN-Nfj-gWWPe7NYvOE5o8mWag57Pb4LePuWtH1_9sJucH_WQP-C09-E5tz7k7ZMbMWLxGNwMN3GbrIsrHdNmlTR3cM2bBL5FF39lP6weIp59rqfZ39_Xf9rb4v7xZtk290XPST0VhkDFO2nrspJMagMd2A56YmjfWaIFoKgoBcql4dgB0B4qYkESnookw2m2nH2N1xu1De5FhzfltVP_BR_WSofJ9QOqSned6dPXWA2cWCqrUtvOAOHcChQmeV3MXtvg_-0wTmrjdyE9KCpWiVKUtOYidcHc1QcfY0D7dSsl6pCZmjNTh8zUZ2aJOp8ph4hfhJQ1AcHhA7mMk-c</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yang, Qian</creator><creator>Kadeer, Zaokere</creator><creator>Gu, Wenxia</creator><creator>Sun, Weiwei</creator><creator>Wumaier, Aishan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1681-1089</orcidid><orcidid>https://orcid.org/0000-0001-9165-7312</orcidid><orcidid>https://orcid.org/0000-0001-9475-1101</orcidid><orcidid>https://orcid.org/0000-0001-6653-4994</orcidid></search><sort><creationdate>2022</creationdate><title>Affective Knowledge Augmented Interactive Graph Convolutional Network for Chinese-Oriented Aspect-Based Sentiment Analysis</title><author>Yang, Qian ; Kadeer, Zaokere ; Gu, Wenxia ; Sun, Weiwei ; Wumaier, Aishan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d0374b9f867929ad3b3fb3c0d1cbf0a53e57113149d4eb331c370f3904c373143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Aspect-based sentiment analysis</topic><topic>China</topic><topic>Chinese sentiment analysis</topic><topic>Commonsense reasoning</topic><topic>Context</topic><topic>Convolutional neural networks</topic><topic>Data mining</topic><topic>Datasets</topic><topic>external affective knowledge</topic><topic>Feature extraction</topic><topic>graph convolutional networks</topic><topic>Graph neural networks</topic><topic>multi-head self-attention</topic><topic>Semantics</topic><topic>Sentences</topic><topic>Sentiment analysis</topic><topic>Syntactics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qian</creatorcontrib><creatorcontrib>Kadeer, Zaokere</creatorcontrib><creatorcontrib>Gu, Wenxia</creatorcontrib><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Wumaier, Aishan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Qian</au><au>Kadeer, Zaokere</au><au>Gu, Wenxia</au><au>Sun, Weiwei</au><au>Wumaier, Aishan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Affective Knowledge Augmented Interactive Graph Convolutional Network for Chinese-Oriented Aspect-Based Sentiment Analysis</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>130686</spage><epage>130698</epage><pages>130686-130698</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Aspect-based sentiment analysis(ABSA) aims to identify the sentiment polarity of specific aspects in sentences, which can more accurately mine the sentiment polarity of users towards different aspects. Most of the existing works derive the sentiment features of specific aspects by interactively learning the dependencies between different aspects of the context. However, the above work has neglected to use the external affective commonsense knowledge to augment the ability of the Graph Convolutional Networks(GCNs) to interactively capture sentiment dependencies of the inter-aspect words in different contexts. In addition, compared to the ABSA research in English, the existing research pays less attention to the Chinese-oriented research. Meanwhile, multi-head self-sttention(MHSA) is applied to extract richer context syntax and semantic interaction features. In this paper, we propose a novel knowledge-aware model in which affective knowledge augments interactive GCN for Chinese-oriented ABSA, namely AKM-IGCN. Moreover, this model can be applied to effectively analyze both Chinese and English comments simultaneously. Hence, we conducted experiments on four Chinese datasets(Camera, Phone, Notebook and Car) and six English benchmark datasets(Restaurant14, Restaurant15, Restaurant16, Twitter, MAMS, Tshirt). Experimental results illustrate that our proposed model outperforms or approaches state-of-the-art models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3228299</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1681-1089</orcidid><orcidid>https://orcid.org/0000-0001-9165-7312</orcidid><orcidid>https://orcid.org/0000-0001-9475-1101</orcidid><orcidid>https://orcid.org/0000-0001-6653-4994</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.130686-130698
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9980354
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial neural networks
Aspect-based sentiment analysis
China
Chinese sentiment analysis
Commonsense reasoning
Context
Convolutional neural networks
Data mining
Datasets
external affective knowledge
Feature extraction
graph convolutional networks
Graph neural networks
multi-head self-attention
Semantics
Sentences
Sentiment analysis
Syntactics
title Affective Knowledge Augmented Interactive Graph Convolutional Network for Chinese-Oriented Aspect-Based Sentiment Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Affective%20Knowledge%20Augmented%20Interactive%20Graph%20Convolutional%20Network%20for%20Chinese-Oriented%20Aspect-Based%20Sentiment%20Analysis&rft.jtitle=IEEE%20access&rft.au=Yang,%20Qian&rft.date=2022&rft.volume=10&rft.spage=130686&rft.epage=130698&rft.pages=130686-130698&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3228299&rft_dat=%3Cproquest_ieee_%3E2756561845%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756561845&rft_id=info:pmid/&rft_ieee_id=9980354&rft_doaj_id=oai_doaj_org_article_7abbdc169fa340f1976afbd3044f5e5d&rfr_iscdi=true