Affective Knowledge Augmented Interactive Graph Convolutional Network for Chinese-Oriented Aspect-Based Sentiment Analysis
Aspect-based sentiment analysis(ABSA) aims to identify the sentiment polarity of specific aspects in sentences, which can more accurately mine the sentiment polarity of users towards different aspects. Most of the existing works derive the sentiment features of specific aspects by interactively lear...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.130686-130698 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 130698 |
---|---|
container_issue | |
container_start_page | 130686 |
container_title | IEEE access |
container_volume | 10 |
creator | Yang, Qian Kadeer, Zaokere Gu, Wenxia Sun, Weiwei Wumaier, Aishan |
description | Aspect-based sentiment analysis(ABSA) aims to identify the sentiment polarity of specific aspects in sentences, which can more accurately mine the sentiment polarity of users towards different aspects. Most of the existing works derive the sentiment features of specific aspects by interactively learning the dependencies between different aspects of the context. However, the above work has neglected to use the external affective commonsense knowledge to augment the ability of the Graph Convolutional Networks(GCNs) to interactively capture sentiment dependencies of the inter-aspect words in different contexts. In addition, compared to the ABSA research in English, the existing research pays less attention to the Chinese-oriented research. Meanwhile, multi-head self-sttention(MHSA) is applied to extract richer context syntax and semantic interaction features. In this paper, we propose a novel knowledge-aware model in which affective knowledge augments interactive GCN for Chinese-oriented ABSA, namely AKM-IGCN. Moreover, this model can be applied to effectively analyze both Chinese and English comments simultaneously. Hence, we conducted experiments on four Chinese datasets(Camera, Phone, Notebook and Car) and six English benchmark datasets(Restaurant14, Restaurant15, Restaurant16, Twitter, MAMS, Tshirt). Experimental results illustrate that our proposed model outperforms or approaches state-of-the-art models. |
doi_str_mv | 10.1109/ACCESS.2022.3228299 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9980354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9980354</ieee_id><doaj_id>oai_doaj_org_article_7abbdc169fa340f1976afbd3044f5e5d</doaj_id><sourcerecordid>2756561845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d0374b9f867929ad3b3fb3c0d1cbf0a53e57113149d4eb331c370f3904c373143</originalsourceid><addsrcrecordid>eNpNkVFP5CAUhRvjJmtcf4EvTXzuCFxoy2NtXJ1o9GF2nwktl5GxllnoONFfL7M1Rh7gcrjfIXCy7JySBaVEXjZte71aLRhhbAGM1UzKo-yE0VIWIKA8_lb_zM5i3JA06iSJ6iR7b6zFfnKvmN-Nfj-gWWPe7NYvOE5o8mWag57Pb4LePuWtH1_9sJucH_WQP-C09-E5tz7k7ZMbMWLxGNwMN3GbrIsrHdNmlTR3cM2bBL5FF39lP6weIp59rqfZ39_Xf9rb4v7xZtk290XPST0VhkDFO2nrspJMagMd2A56YmjfWaIFoKgoBcql4dgB0B4qYkESnookw2m2nH2N1xu1De5FhzfltVP_BR_WSofJ9QOqSned6dPXWA2cWCqrUtvOAOHcChQmeV3MXtvg_-0wTmrjdyE9KCpWiVKUtOYidcHc1QcfY0D7dSsl6pCZmjNTh8zUZ2aJOp8ph4hfhJQ1AcHhA7mMk-c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756561845</pqid></control><display><type>article</type><title>Affective Knowledge Augmented Interactive Graph Convolutional Network for Chinese-Oriented Aspect-Based Sentiment Analysis</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yang, Qian ; Kadeer, Zaokere ; Gu, Wenxia ; Sun, Weiwei ; Wumaier, Aishan</creator><creatorcontrib>Yang, Qian ; Kadeer, Zaokere ; Gu, Wenxia ; Sun, Weiwei ; Wumaier, Aishan</creatorcontrib><description>Aspect-based sentiment analysis(ABSA) aims to identify the sentiment polarity of specific aspects in sentences, which can more accurately mine the sentiment polarity of users towards different aspects. Most of the existing works derive the sentiment features of specific aspects by interactively learning the dependencies between different aspects of the context. However, the above work has neglected to use the external affective commonsense knowledge to augment the ability of the Graph Convolutional Networks(GCNs) to interactively capture sentiment dependencies of the inter-aspect words in different contexts. In addition, compared to the ABSA research in English, the existing research pays less attention to the Chinese-oriented research. Meanwhile, multi-head self-sttention(MHSA) is applied to extract richer context syntax and semantic interaction features. In this paper, we propose a novel knowledge-aware model in which affective knowledge augments interactive GCN for Chinese-oriented ABSA, namely AKM-IGCN. Moreover, this model can be applied to effectively analyze both Chinese and English comments simultaneously. Hence, we conducted experiments on four Chinese datasets(Camera, Phone, Notebook and Car) and six English benchmark datasets(Restaurant14, Restaurant15, Restaurant16, Twitter, MAMS, Tshirt). Experimental results illustrate that our proposed model outperforms or approaches state-of-the-art models.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3228299</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Aspect-based sentiment analysis ; China ; Chinese sentiment analysis ; Commonsense reasoning ; Context ; Convolutional neural networks ; Data mining ; Datasets ; external affective knowledge ; Feature extraction ; graph convolutional networks ; Graph neural networks ; multi-head self-attention ; Semantics ; Sentences ; Sentiment analysis ; Syntactics</subject><ispartof>IEEE access, 2022, Vol.10, p.130686-130698</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d0374b9f867929ad3b3fb3c0d1cbf0a53e57113149d4eb331c370f3904c373143</citedby><cites>FETCH-LOGICAL-c408t-d0374b9f867929ad3b3fb3c0d1cbf0a53e57113149d4eb331c370f3904c373143</cites><orcidid>0000-0003-1681-1089 ; 0000-0001-9165-7312 ; 0000-0001-9475-1101 ; 0000-0001-6653-4994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9980354$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Yang, Qian</creatorcontrib><creatorcontrib>Kadeer, Zaokere</creatorcontrib><creatorcontrib>Gu, Wenxia</creatorcontrib><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Wumaier, Aishan</creatorcontrib><title>Affective Knowledge Augmented Interactive Graph Convolutional Network for Chinese-Oriented Aspect-Based Sentiment Analysis</title><title>IEEE access</title><addtitle>Access</addtitle><description>Aspect-based sentiment analysis(ABSA) aims to identify the sentiment polarity of specific aspects in sentences, which can more accurately mine the sentiment polarity of users towards different aspects. Most of the existing works derive the sentiment features of specific aspects by interactively learning the dependencies between different aspects of the context. However, the above work has neglected to use the external affective commonsense knowledge to augment the ability of the Graph Convolutional Networks(GCNs) to interactively capture sentiment dependencies of the inter-aspect words in different contexts. In addition, compared to the ABSA research in English, the existing research pays less attention to the Chinese-oriented research. Meanwhile, multi-head self-sttention(MHSA) is applied to extract richer context syntax and semantic interaction features. In this paper, we propose a novel knowledge-aware model in which affective knowledge augments interactive GCN for Chinese-oriented ABSA, namely AKM-IGCN. Moreover, this model can be applied to effectively analyze both Chinese and English comments simultaneously. Hence, we conducted experiments on four Chinese datasets(Camera, Phone, Notebook and Car) and six English benchmark datasets(Restaurant14, Restaurant15, Restaurant16, Twitter, MAMS, Tshirt). Experimental results illustrate that our proposed model outperforms or approaches state-of-the-art models.</description><subject>Artificial neural networks</subject><subject>Aspect-based sentiment analysis</subject><subject>China</subject><subject>Chinese sentiment analysis</subject><subject>Commonsense reasoning</subject><subject>Context</subject><subject>Convolutional neural networks</subject><subject>Data mining</subject><subject>Datasets</subject><subject>external affective knowledge</subject><subject>Feature extraction</subject><subject>graph convolutional networks</subject><subject>Graph neural networks</subject><subject>multi-head self-attention</subject><subject>Semantics</subject><subject>Sentences</subject><subject>Sentiment analysis</subject><subject>Syntactics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFP5CAUhRvjJmtcf4EvTXzuCFxoy2NtXJ1o9GF2nwktl5GxllnoONFfL7M1Rh7gcrjfIXCy7JySBaVEXjZte71aLRhhbAGM1UzKo-yE0VIWIKA8_lb_zM5i3JA06iSJ6iR7b6zFfnKvmN-Nfj-gWWPe7NYvOE5o8mWag57Pb4LePuWtH1_9sJucH_WQP-C09-E5tz7k7ZMbMWLxGNwMN3GbrIsrHdNmlTR3cM2bBL5FF39lP6weIp59rqfZ39_Xf9rb4v7xZtk290XPST0VhkDFO2nrspJMagMd2A56YmjfWaIFoKgoBcql4dgB0B4qYkESnookw2m2nH2N1xu1De5FhzfltVP_BR_WSofJ9QOqSned6dPXWA2cWCqrUtvOAOHcChQmeV3MXtvg_-0wTmrjdyE9KCpWiVKUtOYidcHc1QcfY0D7dSsl6pCZmjNTh8zUZ2aJOp8ph4hfhJQ1AcHhA7mMk-c</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yang, Qian</creator><creator>Kadeer, Zaokere</creator><creator>Gu, Wenxia</creator><creator>Sun, Weiwei</creator><creator>Wumaier, Aishan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1681-1089</orcidid><orcidid>https://orcid.org/0000-0001-9165-7312</orcidid><orcidid>https://orcid.org/0000-0001-9475-1101</orcidid><orcidid>https://orcid.org/0000-0001-6653-4994</orcidid></search><sort><creationdate>2022</creationdate><title>Affective Knowledge Augmented Interactive Graph Convolutional Network for Chinese-Oriented Aspect-Based Sentiment Analysis</title><author>Yang, Qian ; Kadeer, Zaokere ; Gu, Wenxia ; Sun, Weiwei ; Wumaier, Aishan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d0374b9f867929ad3b3fb3c0d1cbf0a53e57113149d4eb331c370f3904c373143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Aspect-based sentiment analysis</topic><topic>China</topic><topic>Chinese sentiment analysis</topic><topic>Commonsense reasoning</topic><topic>Context</topic><topic>Convolutional neural networks</topic><topic>Data mining</topic><topic>Datasets</topic><topic>external affective knowledge</topic><topic>Feature extraction</topic><topic>graph convolutional networks</topic><topic>Graph neural networks</topic><topic>multi-head self-attention</topic><topic>Semantics</topic><topic>Sentences</topic><topic>Sentiment analysis</topic><topic>Syntactics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qian</creatorcontrib><creatorcontrib>Kadeer, Zaokere</creatorcontrib><creatorcontrib>Gu, Wenxia</creatorcontrib><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Wumaier, Aishan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Qian</au><au>Kadeer, Zaokere</au><au>Gu, Wenxia</au><au>Sun, Weiwei</au><au>Wumaier, Aishan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Affective Knowledge Augmented Interactive Graph Convolutional Network for Chinese-Oriented Aspect-Based Sentiment Analysis</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>130686</spage><epage>130698</epage><pages>130686-130698</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Aspect-based sentiment analysis(ABSA) aims to identify the sentiment polarity of specific aspects in sentences, which can more accurately mine the sentiment polarity of users towards different aspects. Most of the existing works derive the sentiment features of specific aspects by interactively learning the dependencies between different aspects of the context. However, the above work has neglected to use the external affective commonsense knowledge to augment the ability of the Graph Convolutional Networks(GCNs) to interactively capture sentiment dependencies of the inter-aspect words in different contexts. In addition, compared to the ABSA research in English, the existing research pays less attention to the Chinese-oriented research. Meanwhile, multi-head self-sttention(MHSA) is applied to extract richer context syntax and semantic interaction features. In this paper, we propose a novel knowledge-aware model in which affective knowledge augments interactive GCN for Chinese-oriented ABSA, namely AKM-IGCN. Moreover, this model can be applied to effectively analyze both Chinese and English comments simultaneously. Hence, we conducted experiments on four Chinese datasets(Camera, Phone, Notebook and Car) and six English benchmark datasets(Restaurant14, Restaurant15, Restaurant16, Twitter, MAMS, Tshirt). Experimental results illustrate that our proposed model outperforms or approaches state-of-the-art models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3228299</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1681-1089</orcidid><orcidid>https://orcid.org/0000-0001-9165-7312</orcidid><orcidid>https://orcid.org/0000-0001-9475-1101</orcidid><orcidid>https://orcid.org/0000-0001-6653-4994</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.130686-130698 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9980354 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial neural networks Aspect-based sentiment analysis China Chinese sentiment analysis Commonsense reasoning Context Convolutional neural networks Data mining Datasets external affective knowledge Feature extraction graph convolutional networks Graph neural networks multi-head self-attention Semantics Sentences Sentiment analysis Syntactics |
title | Affective Knowledge Augmented Interactive Graph Convolutional Network for Chinese-Oriented Aspect-Based Sentiment Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Affective%20Knowledge%20Augmented%20Interactive%20Graph%20Convolutional%20Network%20for%20Chinese-Oriented%20Aspect-Based%20Sentiment%20Analysis&rft.jtitle=IEEE%20access&rft.au=Yang,%20Qian&rft.date=2022&rft.volume=10&rft.spage=130686&rft.epage=130698&rft.pages=130686-130698&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3228299&rft_dat=%3Cproquest_ieee_%3E2756561845%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756561845&rft_id=info:pmid/&rft_ieee_id=9980354&rft_doaj_id=oai_doaj_org_article_7abbdc169fa340f1976afbd3044f5e5d&rfr_iscdi=true |