Modularized Mutuality Network for Emotion-cause Pair Extraction
Emotion-cause pair extraction (ECPE) is an emerging task born out of Emotion cause extraction (ECE), which aims to extract the emotion clause and the corresponding cause clause simultaneously. Previous methods decompose ECPE into multiple sub-tasks, namely emotion clause extraction, cause clause ext...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2023-01, Vol.31, p.1-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE/ACM transactions on audio, speech, and language processing |
container_volume | 31 |
creator | Shang, Xichen Chen, Chuxin Chen, Zipeng Ma, Qianli |
description | Emotion-cause pair extraction (ECPE) is an emerging task born out of Emotion cause extraction (ECE), which aims to extract the emotion clause and the corresponding cause clause simultaneously. Previous methods decompose ECPE into multiple sub-tasks, namely emotion clause extraction, cause clause extraction, and emotion-cause pair extraction, and employ different modules to address them separately. However, these methods fail to effectively capture the mutuality within the three sub-tasks, which may hinder the information interaction between emotion and cause. In this paper, we revisit and analyze the mutuality between emotion and cause clauses from a linguistic perspective and further propose a novel Modularized Mutuality Network (MMN) to capture the mutuality explicitly. Specifically, the mutuality can be divided into the following categories, including position bias, sentiment consistency, and natural duality. To this end, we design three modules wrapped with various simple but effective mechanisms to address the mutuality, respectively. Extensive experiments demonstrate that MMN achieves state-of-the-art performances on the ECPE task and detailed analyzed the effect of the three modules for capturing the mutuality within sub-tasks. |
doi_str_mv | 10.1109/TASLP.2022.3228129 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9978639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9978639</ieee_id><sourcerecordid>2756560482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-6eb826d8c4bc483cbe34d70e2d14d29ae8940a85b03fa1dfbcefce13ea65e983</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOOb-gN4UvG5NTtI2uZIx5gdsOnD3IU1OoXNbZtKi89fbuenVOby8zznwEHLNaMYYVXfL8dtskQEFyDiAZKDOyAA4qFRxKs7_dlD0koxiXFFKGS2VKsWA3M-969YmNN_oknnXdmbdtPvkBdtPH96T2odkuvFt47epNV3EZGGaPvpqg7GH9Ipc1GYdcXSaQ7J8mC4nT-ns9fF5Mp6lFlTepgVWEgonraiskNxWyIUrKYJjwoEyKJWgRuYV5bVhrq4s1hYZR1PkqCQfktvj2V3wHx3GVq98F7b9Rw1lXuQFFRL6FhxbNvgYA9Z6F5qNCXvNqD6o0r-q9EGVPqnqoZsj1CDiP9DbkQVX_Ad512XQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756560482</pqid></control><display><type>article</type><title>Modularized Mutuality Network for Emotion-cause Pair Extraction</title><source>IEEE Electronic Library (IEL)</source><creator>Shang, Xichen ; Chen, Chuxin ; Chen, Zipeng ; Ma, Qianli</creator><creatorcontrib>Shang, Xichen ; Chen, Chuxin ; Chen, Zipeng ; Ma, Qianli</creatorcontrib><description>Emotion-cause pair extraction (ECPE) is an emerging task born out of Emotion cause extraction (ECE), which aims to extract the emotion clause and the corresponding cause clause simultaneously. Previous methods decompose ECPE into multiple sub-tasks, namely emotion clause extraction, cause clause extraction, and emotion-cause pair extraction, and employ different modules to address them separately. However, these methods fail to effectively capture the mutuality within the three sub-tasks, which may hinder the information interaction between emotion and cause. In this paper, we revisit and analyze the mutuality between emotion and cause clauses from a linguistic perspective and further propose a novel Modularized Mutuality Network (MMN) to capture the mutuality explicitly. Specifically, the mutuality can be divided into the following categories, including position bias, sentiment consistency, and natural duality. To this end, we design three modules wrapped with various simple but effective mechanisms to address the mutuality, respectively. Extensive experiments demonstrate that MMN achieves state-of-the-art performances on the ECPE task and detailed analyzed the effect of the three modules for capturing the mutuality within sub-tasks.</description><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASLP.2022.3228129</identifier><identifier>CODEN: ITASFA</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Attention Mechanism ; Data mining ; Dual Regularized Predictor ; Emotion-Cause Pair Extraction ; Emotions ; Feature extraction ; Labeling ; Modules ; Mutuality ; Pipelines ; Predictive models ; Tagging ; Task analysis</subject><ispartof>IEEE/ACM transactions on audio, speech, and language processing, 2023-01, Vol.31, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-6eb826d8c4bc483cbe34d70e2d14d29ae8940a85b03fa1dfbcefce13ea65e983</citedby><cites>FETCH-LOGICAL-c295t-6eb826d8c4bc483cbe34d70e2d14d29ae8940a85b03fa1dfbcefce13ea65e983</cites><orcidid>0000-0003-0281-9637 ; 0000-0002-9356-2883 ; 0000-0003-1830-534X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9978639$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9978639$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shang, Xichen</creatorcontrib><creatorcontrib>Chen, Chuxin</creatorcontrib><creatorcontrib>Chen, Zipeng</creatorcontrib><creatorcontrib>Ma, Qianli</creatorcontrib><title>Modularized Mutuality Network for Emotion-cause Pair Extraction</title><title>IEEE/ACM transactions on audio, speech, and language processing</title><addtitle>TASLP</addtitle><description>Emotion-cause pair extraction (ECPE) is an emerging task born out of Emotion cause extraction (ECE), which aims to extract the emotion clause and the corresponding cause clause simultaneously. Previous methods decompose ECPE into multiple sub-tasks, namely emotion clause extraction, cause clause extraction, and emotion-cause pair extraction, and employ different modules to address them separately. However, these methods fail to effectively capture the mutuality within the three sub-tasks, which may hinder the information interaction between emotion and cause. In this paper, we revisit and analyze the mutuality between emotion and cause clauses from a linguistic perspective and further propose a novel Modularized Mutuality Network (MMN) to capture the mutuality explicitly. Specifically, the mutuality can be divided into the following categories, including position bias, sentiment consistency, and natural duality. To this end, we design three modules wrapped with various simple but effective mechanisms to address the mutuality, respectively. Extensive experiments demonstrate that MMN achieves state-of-the-art performances on the ECPE task and detailed analyzed the effect of the three modules for capturing the mutuality within sub-tasks.</description><subject>Attention Mechanism</subject><subject>Data mining</subject><subject>Dual Regularized Predictor</subject><subject>Emotion-Cause Pair Extraction</subject><subject>Emotions</subject><subject>Feature extraction</subject><subject>Labeling</subject><subject>Modules</subject><subject>Mutuality</subject><subject>Pipelines</subject><subject>Predictive models</subject><subject>Tagging</subject><subject>Task analysis</subject><issn>2329-9290</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOOb-gN4UvG5NTtI2uZIx5gdsOnD3IU1OoXNbZtKi89fbuenVOby8zznwEHLNaMYYVXfL8dtskQEFyDiAZKDOyAA4qFRxKs7_dlD0koxiXFFKGS2VKsWA3M-969YmNN_oknnXdmbdtPvkBdtPH96T2odkuvFt47epNV3EZGGaPvpqg7GH9Ipc1GYdcXSaQ7J8mC4nT-ns9fF5Mp6lFlTepgVWEgonraiskNxWyIUrKYJjwoEyKJWgRuYV5bVhrq4s1hYZR1PkqCQfktvj2V3wHx3GVq98F7b9Rw1lXuQFFRL6FhxbNvgYA9Z6F5qNCXvNqD6o0r-q9EGVPqnqoZsj1CDiP9DbkQVX_Ad512XQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Shang, Xichen</creator><creator>Chen, Chuxin</creator><creator>Chen, Zipeng</creator><creator>Ma, Qianli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0281-9637</orcidid><orcidid>https://orcid.org/0000-0002-9356-2883</orcidid><orcidid>https://orcid.org/0000-0003-1830-534X</orcidid></search><sort><creationdate>20230101</creationdate><title>Modularized Mutuality Network for Emotion-cause Pair Extraction</title><author>Shang, Xichen ; Chen, Chuxin ; Chen, Zipeng ; Ma, Qianli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-6eb826d8c4bc483cbe34d70e2d14d29ae8940a85b03fa1dfbcefce13ea65e983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Attention Mechanism</topic><topic>Data mining</topic><topic>Dual Regularized Predictor</topic><topic>Emotion-Cause Pair Extraction</topic><topic>Emotions</topic><topic>Feature extraction</topic><topic>Labeling</topic><topic>Modules</topic><topic>Mutuality</topic><topic>Pipelines</topic><topic>Predictive models</topic><topic>Tagging</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Xichen</creatorcontrib><creatorcontrib>Chen, Chuxin</creatorcontrib><creatorcontrib>Chen, Zipeng</creatorcontrib><creatorcontrib>Ma, Qianli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shang, Xichen</au><au>Chen, Chuxin</au><au>Chen, Zipeng</au><au>Ma, Qianli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modularized Mutuality Network for Emotion-cause Pair Extraction</atitle><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle><stitle>TASLP</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>31</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2329-9290</issn><eissn>2329-9304</eissn><coden>ITASFA</coden><abstract>Emotion-cause pair extraction (ECPE) is an emerging task born out of Emotion cause extraction (ECE), which aims to extract the emotion clause and the corresponding cause clause simultaneously. Previous methods decompose ECPE into multiple sub-tasks, namely emotion clause extraction, cause clause extraction, and emotion-cause pair extraction, and employ different modules to address them separately. However, these methods fail to effectively capture the mutuality within the three sub-tasks, which may hinder the information interaction between emotion and cause. In this paper, we revisit and analyze the mutuality between emotion and cause clauses from a linguistic perspective and further propose a novel Modularized Mutuality Network (MMN) to capture the mutuality explicitly. Specifically, the mutuality can be divided into the following categories, including position bias, sentiment consistency, and natural duality. To this end, we design three modules wrapped with various simple but effective mechanisms to address the mutuality, respectively. Extensive experiments demonstrate that MMN achieves state-of-the-art performances on the ECPE task and detailed analyzed the effect of the three modules for capturing the mutuality within sub-tasks.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TASLP.2022.3228129</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0281-9637</orcidid><orcidid>https://orcid.org/0000-0002-9356-2883</orcidid><orcidid>https://orcid.org/0000-0003-1830-534X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2329-9290 |
ispartof | IEEE/ACM transactions on audio, speech, and language processing, 2023-01, Vol.31, p.1-11 |
issn | 2329-9290 2329-9304 |
language | eng |
recordid | cdi_ieee_primary_9978639 |
source | IEEE Electronic Library (IEL) |
subjects | Attention Mechanism Data mining Dual Regularized Predictor Emotion-Cause Pair Extraction Emotions Feature extraction Labeling Modules Mutuality Pipelines Predictive models Tagging Task analysis |
title | Modularized Mutuality Network for Emotion-cause Pair Extraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modularized%20Mutuality%20Network%20for%20Emotion-cause%20Pair%20Extraction&rft.jtitle=IEEE/ACM%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Shang,%20Xichen&rft.date=2023-01-01&rft.volume=31&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2329-9290&rft.eissn=2329-9304&rft.coden=ITASFA&rft_id=info:doi/10.1109/TASLP.2022.3228129&rft_dat=%3Cproquest_RIE%3E2756560482%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756560482&rft_id=info:pmid/&rft_ieee_id=9978639&rfr_iscdi=true |