Modularized Mutuality Network for Emotion-cause Pair Extraction

Emotion-cause pair extraction (ECPE) is an emerging task born out of Emotion cause extraction (ECE), which aims to extract the emotion clause and the corresponding cause clause simultaneously. Previous methods decompose ECPE into multiple sub-tasks, namely emotion clause extraction, cause clause ext...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2023-01, Vol.31, p.1-11
Hauptverfasser: Shang, Xichen, Chen, Chuxin, Chen, Zipeng, Ma, Qianli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title IEEE/ACM transactions on audio, speech, and language processing
container_volume 31
creator Shang, Xichen
Chen, Chuxin
Chen, Zipeng
Ma, Qianli
description Emotion-cause pair extraction (ECPE) is an emerging task born out of Emotion cause extraction (ECE), which aims to extract the emotion clause and the corresponding cause clause simultaneously. Previous methods decompose ECPE into multiple sub-tasks, namely emotion clause extraction, cause clause extraction, and emotion-cause pair extraction, and employ different modules to address them separately. However, these methods fail to effectively capture the mutuality within the three sub-tasks, which may hinder the information interaction between emotion and cause. In this paper, we revisit and analyze the mutuality between emotion and cause clauses from a linguistic perspective and further propose a novel Modularized Mutuality Network (MMN) to capture the mutuality explicitly. Specifically, the mutuality can be divided into the following categories, including position bias, sentiment consistency, and natural duality. To this end, we design three modules wrapped with various simple but effective mechanisms to address the mutuality, respectively. Extensive experiments demonstrate that MMN achieves state-of-the-art performances on the ECPE task and detailed analyzed the effect of the three modules for capturing the mutuality within sub-tasks.
doi_str_mv 10.1109/TASLP.2022.3228129
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9978639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9978639</ieee_id><sourcerecordid>2756560482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-6eb826d8c4bc483cbe34d70e2d14d29ae8940a85b03fa1dfbcefce13ea65e983</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOOb-gN4UvG5NTtI2uZIx5gdsOnD3IU1OoXNbZtKi89fbuenVOby8zznwEHLNaMYYVXfL8dtskQEFyDiAZKDOyAA4qFRxKs7_dlD0koxiXFFKGS2VKsWA3M-969YmNN_oknnXdmbdtPvkBdtPH96T2odkuvFt47epNV3EZGGaPvpqg7GH9Ipc1GYdcXSaQ7J8mC4nT-ns9fF5Mp6lFlTepgVWEgonraiskNxWyIUrKYJjwoEyKJWgRuYV5bVhrq4s1hYZR1PkqCQfktvj2V3wHx3GVq98F7b9Rw1lXuQFFRL6FhxbNvgYA9Z6F5qNCXvNqD6o0r-q9EGVPqnqoZsj1CDiP9DbkQVX_Ad512XQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756560482</pqid></control><display><type>article</type><title>Modularized Mutuality Network for Emotion-cause Pair Extraction</title><source>IEEE Electronic Library (IEL)</source><creator>Shang, Xichen ; Chen, Chuxin ; Chen, Zipeng ; Ma, Qianli</creator><creatorcontrib>Shang, Xichen ; Chen, Chuxin ; Chen, Zipeng ; Ma, Qianli</creatorcontrib><description>Emotion-cause pair extraction (ECPE) is an emerging task born out of Emotion cause extraction (ECE), which aims to extract the emotion clause and the corresponding cause clause simultaneously. Previous methods decompose ECPE into multiple sub-tasks, namely emotion clause extraction, cause clause extraction, and emotion-cause pair extraction, and employ different modules to address them separately. However, these methods fail to effectively capture the mutuality within the three sub-tasks, which may hinder the information interaction between emotion and cause. In this paper, we revisit and analyze the mutuality between emotion and cause clauses from a linguistic perspective and further propose a novel Modularized Mutuality Network (MMN) to capture the mutuality explicitly. Specifically, the mutuality can be divided into the following categories, including position bias, sentiment consistency, and natural duality. To this end, we design three modules wrapped with various simple but effective mechanisms to address the mutuality, respectively. Extensive experiments demonstrate that MMN achieves state-of-the-art performances on the ECPE task and detailed analyzed the effect of the three modules for capturing the mutuality within sub-tasks.</description><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASLP.2022.3228129</identifier><identifier>CODEN: ITASFA</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Attention Mechanism ; Data mining ; Dual Regularized Predictor ; Emotion-Cause Pair Extraction ; Emotions ; Feature extraction ; Labeling ; Modules ; Mutuality ; Pipelines ; Predictive models ; Tagging ; Task analysis</subject><ispartof>IEEE/ACM transactions on audio, speech, and language processing, 2023-01, Vol.31, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-6eb826d8c4bc483cbe34d70e2d14d29ae8940a85b03fa1dfbcefce13ea65e983</citedby><cites>FETCH-LOGICAL-c295t-6eb826d8c4bc483cbe34d70e2d14d29ae8940a85b03fa1dfbcefce13ea65e983</cites><orcidid>0000-0003-0281-9637 ; 0000-0002-9356-2883 ; 0000-0003-1830-534X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9978639$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9978639$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shang, Xichen</creatorcontrib><creatorcontrib>Chen, Chuxin</creatorcontrib><creatorcontrib>Chen, Zipeng</creatorcontrib><creatorcontrib>Ma, Qianli</creatorcontrib><title>Modularized Mutuality Network for Emotion-cause Pair Extraction</title><title>IEEE/ACM transactions on audio, speech, and language processing</title><addtitle>TASLP</addtitle><description>Emotion-cause pair extraction (ECPE) is an emerging task born out of Emotion cause extraction (ECE), which aims to extract the emotion clause and the corresponding cause clause simultaneously. Previous methods decompose ECPE into multiple sub-tasks, namely emotion clause extraction, cause clause extraction, and emotion-cause pair extraction, and employ different modules to address them separately. However, these methods fail to effectively capture the mutuality within the three sub-tasks, which may hinder the information interaction between emotion and cause. In this paper, we revisit and analyze the mutuality between emotion and cause clauses from a linguistic perspective and further propose a novel Modularized Mutuality Network (MMN) to capture the mutuality explicitly. Specifically, the mutuality can be divided into the following categories, including position bias, sentiment consistency, and natural duality. To this end, we design three modules wrapped with various simple but effective mechanisms to address the mutuality, respectively. Extensive experiments demonstrate that MMN achieves state-of-the-art performances on the ECPE task and detailed analyzed the effect of the three modules for capturing the mutuality within sub-tasks.</description><subject>Attention Mechanism</subject><subject>Data mining</subject><subject>Dual Regularized Predictor</subject><subject>Emotion-Cause Pair Extraction</subject><subject>Emotions</subject><subject>Feature extraction</subject><subject>Labeling</subject><subject>Modules</subject><subject>Mutuality</subject><subject>Pipelines</subject><subject>Predictive models</subject><subject>Tagging</subject><subject>Task analysis</subject><issn>2329-9290</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOOb-gN4UvG5NTtI2uZIx5gdsOnD3IU1OoXNbZtKi89fbuenVOby8zznwEHLNaMYYVXfL8dtskQEFyDiAZKDOyAA4qFRxKs7_dlD0koxiXFFKGS2VKsWA3M-969YmNN_oknnXdmbdtPvkBdtPH96T2odkuvFt47epNV3EZGGaPvpqg7GH9Ipc1GYdcXSaQ7J8mC4nT-ns9fF5Mp6lFlTepgVWEgonraiskNxWyIUrKYJjwoEyKJWgRuYV5bVhrq4s1hYZR1PkqCQfktvj2V3wHx3GVq98F7b9Rw1lXuQFFRL6FhxbNvgYA9Z6F5qNCXvNqD6o0r-q9EGVPqnqoZsj1CDiP9DbkQVX_Ad512XQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Shang, Xichen</creator><creator>Chen, Chuxin</creator><creator>Chen, Zipeng</creator><creator>Ma, Qianli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0281-9637</orcidid><orcidid>https://orcid.org/0000-0002-9356-2883</orcidid><orcidid>https://orcid.org/0000-0003-1830-534X</orcidid></search><sort><creationdate>20230101</creationdate><title>Modularized Mutuality Network for Emotion-cause Pair Extraction</title><author>Shang, Xichen ; Chen, Chuxin ; Chen, Zipeng ; Ma, Qianli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-6eb826d8c4bc483cbe34d70e2d14d29ae8940a85b03fa1dfbcefce13ea65e983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Attention Mechanism</topic><topic>Data mining</topic><topic>Dual Regularized Predictor</topic><topic>Emotion-Cause Pair Extraction</topic><topic>Emotions</topic><topic>Feature extraction</topic><topic>Labeling</topic><topic>Modules</topic><topic>Mutuality</topic><topic>Pipelines</topic><topic>Predictive models</topic><topic>Tagging</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Xichen</creatorcontrib><creatorcontrib>Chen, Chuxin</creatorcontrib><creatorcontrib>Chen, Zipeng</creatorcontrib><creatorcontrib>Ma, Qianli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shang, Xichen</au><au>Chen, Chuxin</au><au>Chen, Zipeng</au><au>Ma, Qianli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modularized Mutuality Network for Emotion-cause Pair Extraction</atitle><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle><stitle>TASLP</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>31</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2329-9290</issn><eissn>2329-9304</eissn><coden>ITASFA</coden><abstract>Emotion-cause pair extraction (ECPE) is an emerging task born out of Emotion cause extraction (ECE), which aims to extract the emotion clause and the corresponding cause clause simultaneously. Previous methods decompose ECPE into multiple sub-tasks, namely emotion clause extraction, cause clause extraction, and emotion-cause pair extraction, and employ different modules to address them separately. However, these methods fail to effectively capture the mutuality within the three sub-tasks, which may hinder the information interaction between emotion and cause. In this paper, we revisit and analyze the mutuality between emotion and cause clauses from a linguistic perspective and further propose a novel Modularized Mutuality Network (MMN) to capture the mutuality explicitly. Specifically, the mutuality can be divided into the following categories, including position bias, sentiment consistency, and natural duality. To this end, we design three modules wrapped with various simple but effective mechanisms to address the mutuality, respectively. Extensive experiments demonstrate that MMN achieves state-of-the-art performances on the ECPE task and detailed analyzed the effect of the three modules for capturing the mutuality within sub-tasks.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TASLP.2022.3228129</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0281-9637</orcidid><orcidid>https://orcid.org/0000-0002-9356-2883</orcidid><orcidid>https://orcid.org/0000-0003-1830-534X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-9290
ispartof IEEE/ACM transactions on audio, speech, and language processing, 2023-01, Vol.31, p.1-11
issn 2329-9290
2329-9304
language eng
recordid cdi_ieee_primary_9978639
source IEEE Electronic Library (IEL)
subjects Attention Mechanism
Data mining
Dual Regularized Predictor
Emotion-Cause Pair Extraction
Emotions
Feature extraction
Labeling
Modules
Mutuality
Pipelines
Predictive models
Tagging
Task analysis
title Modularized Mutuality Network for Emotion-cause Pair Extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modularized%20Mutuality%20Network%20for%20Emotion-cause%20Pair%20Extraction&rft.jtitle=IEEE/ACM%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Shang,%20Xichen&rft.date=2023-01-01&rft.volume=31&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2329-9290&rft.eissn=2329-9304&rft.coden=ITASFA&rft_id=info:doi/10.1109/TASLP.2022.3228129&rft_dat=%3Cproquest_RIE%3E2756560482%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756560482&rft_id=info:pmid/&rft_ieee_id=9978639&rfr_iscdi=true