Consensus of Julia sets of Potts models on diamond-like hierarchical lattice

The limit sets of zeros of the partition function for λ-state Potts models on diamond-like hierarchical lattice are the Julia sets of functions in a family of rational functions. In this paper, the consensus problem of Julia sets generated by λ-state Potts models on diamond-like hierarchical lattice...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022-01, Vol.10, p.1-1
Hauptverfasser: Lu, Xiaoling, Sun, Weihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 10
creator Lu, Xiaoling
Sun, Weihua
description The limit sets of zeros of the partition function for λ-state Potts models on diamond-like hierarchical lattice are the Julia sets of functions in a family of rational functions. In this paper, the consensus problem of Julia sets generated by λ-state Potts models on diamond-like hierarchical lattice is studied. Two types of the consensus problem of Julia sets are considered, one is with a leader and the other is with no leaders. Based on these two types, two different control protocols are proposed respectively to make systems achieve consensus of Julia sets. The simulations confirm the efficacy of control protocols.
doi_str_mv 10.1109/ACCESS.2022.3226622
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9969598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9969598</ieee_id><doaj_id>oai_doaj_org_article_fdfd935d9d76421292ed85f1fe4b5173</doaj_id><sourcerecordid>2754153775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-33716c8f3b5daf43b22fc7d0a5e38ffc82ad7aa1c91b1c8f4af74de17729eaeb3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIIOgX9BKJc0psx3F8RBGPokogFc7Wxl6DSxqDnR74e9wGVexlH5qZXe1k2ZyUC0JKeXPbtnfr9YKWlC4YpXVN6Ul2QUktC8ZZffqvPs9mMW7KFE0acXGRrVo_RBziLube5k-73kEecTx0L35MxdYb7FM_5MbB1g-m6N0n5h8OAwT94TT0eQ_j6DReZWcW-oizv3yZvd3fvbaPxer5YdnergrNeDMWjAlS68ayjhuwFesotVqYEjiyxlrdUDACgGhJOpJwFVhRGSRCUImAHbvMlpOu8bBRX8FtIfwoD04dBj68KwjpoB6VNdZIxo00oq4ooZKiabglFquOE8GS1vWk9RX89w7jqDZ-F4Z0vqKCV4QzIXhCsQmlg48xoD1uJaXau6AmF9TeBfXnQmLNJ5ZDxCNDyvR62bBf8_iDsg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754153775</pqid></control><display><type>article</type><title>Consensus of Julia sets of Potts models on diamond-like hierarchical lattice</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lu, Xiaoling ; Sun, Weihua</creator><creatorcontrib>Lu, Xiaoling ; Sun, Weihua</creatorcontrib><description>The limit sets of zeros of the partition function for λ-state Potts models on diamond-like hierarchical lattice are the Julia sets of functions in a family of rational functions. In this paper, the consensus problem of Julia sets generated by λ-state Potts models on diamond-like hierarchical lattice is studied. Two types of the consensus problem of Julia sets are considered, one is with a leader and the other is with no leaders. Based on these two types, two different control protocols are proposed respectively to make systems achieve consensus of Julia sets. The simulations confirm the efficacy of control protocols.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3226622</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Consensus ; Diamonds ; Julia set ; Multi-agent system ; Partitions (mathematics) ; Rational functions</subject><ispartof>IEEE access, 2022-01, Vol.10, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-33716c8f3b5daf43b22fc7d0a5e38ffc82ad7aa1c91b1c8f4af74de17729eaeb3</cites><orcidid>0000-0001-7924-5585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9969598$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,27632,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Lu, Xiaoling</creatorcontrib><creatorcontrib>Sun, Weihua</creatorcontrib><title>Consensus of Julia sets of Potts models on diamond-like hierarchical lattice</title><title>IEEE access</title><addtitle>Access</addtitle><description>The limit sets of zeros of the partition function for λ-state Potts models on diamond-like hierarchical lattice are the Julia sets of functions in a family of rational functions. In this paper, the consensus problem of Julia sets generated by λ-state Potts models on diamond-like hierarchical lattice is studied. Two types of the consensus problem of Julia sets are considered, one is with a leader and the other is with no leaders. Based on these two types, two different control protocols are proposed respectively to make systems achieve consensus of Julia sets. The simulations confirm the efficacy of control protocols.</description><subject>Consensus</subject><subject>Diamonds</subject><subject>Julia set</subject><subject>Multi-agent system</subject><subject>Partitions (mathematics)</subject><subject>Rational functions</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIIOgX9BKJc0psx3F8RBGPokogFc7Wxl6DSxqDnR74e9wGVexlH5qZXe1k2ZyUC0JKeXPbtnfr9YKWlC4YpXVN6Ul2QUktC8ZZffqvPs9mMW7KFE0acXGRrVo_RBziLube5k-73kEecTx0L35MxdYb7FM_5MbB1g-m6N0n5h8OAwT94TT0eQ_j6DReZWcW-oizv3yZvd3fvbaPxer5YdnergrNeDMWjAlS68ayjhuwFesotVqYEjiyxlrdUDACgGhJOpJwFVhRGSRCUImAHbvMlpOu8bBRX8FtIfwoD04dBj68KwjpoB6VNdZIxo00oq4ooZKiabglFquOE8GS1vWk9RX89w7jqDZ-F4Z0vqKCV4QzIXhCsQmlg48xoD1uJaXau6AmF9TeBfXnQmLNJ5ZDxCNDyvR62bBf8_iDsg</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Lu, Xiaoling</creator><creator>Sun, Weihua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7924-5585</orcidid></search><sort><creationdate>20220101</creationdate><title>Consensus of Julia sets of Potts models on diamond-like hierarchical lattice</title><author>Lu, Xiaoling ; Sun, Weihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-33716c8f3b5daf43b22fc7d0a5e38ffc82ad7aa1c91b1c8f4af74de17729eaeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Consensus</topic><topic>Diamonds</topic><topic>Julia set</topic><topic>Multi-agent system</topic><topic>Partitions (mathematics)</topic><topic>Rational functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xiaoling</creatorcontrib><creatorcontrib>Sun, Weihua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xiaoling</au><au>Sun, Weihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consensus of Julia sets of Potts models on diamond-like hierarchical lattice</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>10</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The limit sets of zeros of the partition function for λ-state Potts models on diamond-like hierarchical lattice are the Julia sets of functions in a family of rational functions. In this paper, the consensus problem of Julia sets generated by λ-state Potts models on diamond-like hierarchical lattice is studied. Two types of the consensus problem of Julia sets are considered, one is with a leader and the other is with no leaders. Based on these two types, two different control protocols are proposed respectively to make systems achieve consensus of Julia sets. The simulations confirm the efficacy of control protocols.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3226622</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7924-5585</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022-01, Vol.10, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9969598
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Consensus
Diamonds
Julia set
Multi-agent system
Partitions (mathematics)
Rational functions
title Consensus of Julia sets of Potts models on diamond-like hierarchical lattice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A50%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consensus%20of%20Julia%20sets%20of%20Potts%20models%20on%20diamond-like%20hierarchical%20lattice&rft.jtitle=IEEE%20access&rft.au=Lu,%20Xiaoling&rft.date=2022-01-01&rft.volume=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3226622&rft_dat=%3Cproquest_ieee_%3E2754153775%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754153775&rft_id=info:pmid/&rft_ieee_id=9969598&rft_doaj_id=oai_doaj_org_article_fdfd935d9d76421292ed85f1fe4b5173&rfr_iscdi=true