Dynamic Semantics SLAM Based on Improved Mask R-CNN

Simulation localization and mapping(SLAM) is a popular research problem in the field of driverless cars, but there are still some difficult problems to solve. The conventional SLAM algorithm does not take into account the dynamic objects in the environment, resulting in problems such as low bit pose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.126525-126535
Hauptverfasser: Zhang, Xinguang, Wang, Xiankun, Zhang, Ruidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 126535
container_issue
container_start_page 126525
container_title IEEE access
container_volume 10
creator Zhang, Xinguang
Wang, Xiankun
Zhang, Ruidong
description Simulation localization and mapping(SLAM) is a popular research problem in the field of driverless cars, but there are still some difficult problems to solve. The conventional SLAM algorithm does not take into account the dynamic objects in the environment, resulting in problems such as low bit pose estimation. In this study, we provide a deep learning-based SLAM scheme. In order to solve the problem of inaccurate feature point extraction in a dynamic environment, this paper adopts image pyramid to distribute feature points uniformly and extracts feature points by using the adaptive thresholding method. To address the problem of incomplete dynamic object mask segmentation, an improved Mask R-CNN network was proposed to improve the integrity of the mask edges by adding an edge detection end to the Mask R-CNN network. To address the problem of incomplete dynamic feature point rejection, this study uses a motion consistency detection algorithm to detect dynamic feature points, and uses the remaining static features for bit pose estimation. The experimental results on the TUM R-GBD dataset show that the absolute trajectory error of the SLAM algorithm in this study is reduced by 93.2% on average compared to the ORB-SLAM2 algorithm. Compared to the Dyna-SLAM algorithm, the absolute trajectory error of the algorithm in this study was reduced by 36.6% on average.
doi_str_mv 10.1109/ACCESS.2022.3226212
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9968262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9968262</ieee_id><doaj_id>oai_doaj_org_article_5beca69f4a0e4351913247dcbbda6430</doaj_id><sourcerecordid>2748572047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6931f9c2c63305f2205a8c14f30de2facdd76c30df1a52cadb45de4343f618783</originalsourceid><addsrcrecordid>eNpNUNtOwkAQ3RhNJMgX8NLE5-Lu7KXdR6yoJICJ1efNdi-mSCl2wYS_d7HEOC9zPWdmDkJjgieEYHk3LYpZWU4AA0wogAACF2gARMiUciou_8XXaBTCGkfLY4lnA0Qfjlvd1CYpXaO3-9qEpFxMl8m9Ds4m7TaZN7uu_Y7xUofP5DUtVqsbdOX1JrjR2Q_R--PsrXhOFy9P82K6SA3D-T4VkhIvDRhBKeYeAHOdG8I8xdaB18baTJiYeKI5GG0rxq1jlFEvSJ7ldIjmPa9t9VrturrR3VG1ula_hbb7ULqLJ2-c4pUzWkjPNI4MnEhCgWXWVJXVglEcuW57rvjN18GFvVq3h24bz1eQsZxngFkWp2g_Zbo2hM75v60Eq5PYqhdbncRWZ7EjatyjaufcH0JKkcc-_QEwb3d5</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748572047</pqid></control><display><type>article</type><title>Dynamic Semantics SLAM Based on Improved Mask R-CNN</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, Xinguang ; Wang, Xiankun ; Zhang, Ruidong</creator><creatorcontrib>Zhang, Xinguang ; Wang, Xiankun ; Zhang, Ruidong</creatorcontrib><description>Simulation localization and mapping(SLAM) is a popular research problem in the field of driverless cars, but there are still some difficult problems to solve. The conventional SLAM algorithm does not take into account the dynamic objects in the environment, resulting in problems such as low bit pose estimation. In this study, we provide a deep learning-based SLAM scheme. In order to solve the problem of inaccurate feature point extraction in a dynamic environment, this paper adopts image pyramid to distribute feature points uniformly and extracts feature points by using the adaptive thresholding method. To address the problem of incomplete dynamic object mask segmentation, an improved Mask R-CNN network was proposed to improve the integrity of the mask edges by adding an edge detection end to the Mask R-CNN network. To address the problem of incomplete dynamic feature point rejection, this study uses a motion consistency detection algorithm to detect dynamic feature points, and uses the remaining static features for bit pose estimation. The experimental results on the TUM R-GBD dataset show that the absolute trajectory error of the SLAM algorithm in this study is reduced by 93.2% on average compared to the ORB-SLAM2 algorithm. Compared to the Dyna-SLAM algorithm, the absolute trajectory error of the algorithm in this study was reduced by 36.6% on average.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3226212</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autonomous cars ; dynamic objects ; Dynamics ; Edge detection ; Error analysis ; Feature extraction ; Heuristic algorithms ; Image edge detection ; Image segmentation ; Machine learning ; Mask R-CNN ; Motion perception ; Pose estimation ; Semantics ; Simultaneous localization and mapping ; SLAM ; TUM R-GBD ; Visualization</subject><ispartof>IEEE access, 2022, Vol.10, p.126525-126535</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6931f9c2c63305f2205a8c14f30de2facdd76c30df1a52cadb45de4343f618783</citedby><cites>FETCH-LOGICAL-c408t-6931f9c2c63305f2205a8c14f30de2facdd76c30df1a52cadb45de4343f618783</cites><orcidid>0000-0001-8738-493X ; 0000-0003-4010-3357</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9968262$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zhang, Xinguang</creatorcontrib><creatorcontrib>Wang, Xiankun</creatorcontrib><creatorcontrib>Zhang, Ruidong</creatorcontrib><title>Dynamic Semantics SLAM Based on Improved Mask R-CNN</title><title>IEEE access</title><addtitle>Access</addtitle><description>Simulation localization and mapping(SLAM) is a popular research problem in the field of driverless cars, but there are still some difficult problems to solve. The conventional SLAM algorithm does not take into account the dynamic objects in the environment, resulting in problems such as low bit pose estimation. In this study, we provide a deep learning-based SLAM scheme. In order to solve the problem of inaccurate feature point extraction in a dynamic environment, this paper adopts image pyramid to distribute feature points uniformly and extracts feature points by using the adaptive thresholding method. To address the problem of incomplete dynamic object mask segmentation, an improved Mask R-CNN network was proposed to improve the integrity of the mask edges by adding an edge detection end to the Mask R-CNN network. To address the problem of incomplete dynamic feature point rejection, this study uses a motion consistency detection algorithm to detect dynamic feature points, and uses the remaining static features for bit pose estimation. The experimental results on the TUM R-GBD dataset show that the absolute trajectory error of the SLAM algorithm in this study is reduced by 93.2% on average compared to the ORB-SLAM2 algorithm. Compared to the Dyna-SLAM algorithm, the absolute trajectory error of the algorithm in this study was reduced by 36.6% on average.</description><subject>Algorithms</subject><subject>Autonomous cars</subject><subject>dynamic objects</subject><subject>Dynamics</subject><subject>Edge detection</subject><subject>Error analysis</subject><subject>Feature extraction</subject><subject>Heuristic algorithms</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Mask R-CNN</subject><subject>Motion perception</subject><subject>Pose estimation</subject><subject>Semantics</subject><subject>Simultaneous localization and mapping</subject><subject>SLAM</subject><subject>TUM R-GBD</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUNtOwkAQ3RhNJMgX8NLE5-Lu7KXdR6yoJICJ1efNdi-mSCl2wYS_d7HEOC9zPWdmDkJjgieEYHk3LYpZWU4AA0wogAACF2gARMiUciou_8XXaBTCGkfLY4lnA0Qfjlvd1CYpXaO3-9qEpFxMl8m9Ds4m7TaZN7uu_Y7xUofP5DUtVqsbdOX1JrjR2Q_R--PsrXhOFy9P82K6SA3D-T4VkhIvDRhBKeYeAHOdG8I8xdaB18baTJiYeKI5GG0rxq1jlFEvSJ7ldIjmPa9t9VrturrR3VG1ula_hbb7ULqLJ2-c4pUzWkjPNI4MnEhCgWXWVJXVglEcuW57rvjN18GFvVq3h24bz1eQsZxngFkWp2g_Zbo2hM75v60Eq5PYqhdbncRWZ7EjatyjaufcH0JKkcc-_QEwb3d5</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhang, Xinguang</creator><creator>Wang, Xiankun</creator><creator>Zhang, Ruidong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8738-493X</orcidid><orcidid>https://orcid.org/0000-0003-4010-3357</orcidid></search><sort><creationdate>2022</creationdate><title>Dynamic Semantics SLAM Based on Improved Mask R-CNN</title><author>Zhang, Xinguang ; Wang, Xiankun ; Zhang, Ruidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6931f9c2c63305f2205a8c14f30de2facdd76c30df1a52cadb45de4343f618783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Autonomous cars</topic><topic>dynamic objects</topic><topic>Dynamics</topic><topic>Edge detection</topic><topic>Error analysis</topic><topic>Feature extraction</topic><topic>Heuristic algorithms</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Mask R-CNN</topic><topic>Motion perception</topic><topic>Pose estimation</topic><topic>Semantics</topic><topic>Simultaneous localization and mapping</topic><topic>SLAM</topic><topic>TUM R-GBD</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xinguang</creatorcontrib><creatorcontrib>Wang, Xiankun</creatorcontrib><creatorcontrib>Zhang, Ruidong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xinguang</au><au>Wang, Xiankun</au><au>Zhang, Ruidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Semantics SLAM Based on Improved Mask R-CNN</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>126525</spage><epage>126535</epage><pages>126525-126535</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Simulation localization and mapping(SLAM) is a popular research problem in the field of driverless cars, but there are still some difficult problems to solve. The conventional SLAM algorithm does not take into account the dynamic objects in the environment, resulting in problems such as low bit pose estimation. In this study, we provide a deep learning-based SLAM scheme. In order to solve the problem of inaccurate feature point extraction in a dynamic environment, this paper adopts image pyramid to distribute feature points uniformly and extracts feature points by using the adaptive thresholding method. To address the problem of incomplete dynamic object mask segmentation, an improved Mask R-CNN network was proposed to improve the integrity of the mask edges by adding an edge detection end to the Mask R-CNN network. To address the problem of incomplete dynamic feature point rejection, this study uses a motion consistency detection algorithm to detect dynamic feature points, and uses the remaining static features for bit pose estimation. The experimental results on the TUM R-GBD dataset show that the absolute trajectory error of the SLAM algorithm in this study is reduced by 93.2% on average compared to the ORB-SLAM2 algorithm. Compared to the Dyna-SLAM algorithm, the absolute trajectory error of the algorithm in this study was reduced by 36.6% on average.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3226212</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8738-493X</orcidid><orcidid>https://orcid.org/0000-0003-4010-3357</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.126525-126535
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9968262
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Autonomous cars
dynamic objects
Dynamics
Edge detection
Error analysis
Feature extraction
Heuristic algorithms
Image edge detection
Image segmentation
Machine learning
Mask R-CNN
Motion perception
Pose estimation
Semantics
Simultaneous localization and mapping
SLAM
TUM R-GBD
Visualization
title Dynamic Semantics SLAM Based on Improved Mask R-CNN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Semantics%20SLAM%20Based%20on%20Improved%20Mask%20R-CNN&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Xinguang&rft.date=2022&rft.volume=10&rft.spage=126525&rft.epage=126535&rft.pages=126525-126535&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3226212&rft_dat=%3Cproquest_ieee_%3E2748572047%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748572047&rft_id=info:pmid/&rft_ieee_id=9968262&rft_doaj_id=oai_doaj_org_article_5beca69f4a0e4351913247dcbbda6430&rfr_iscdi=true