Performance Analysis and Bit Allocation of Cell-Free Massive MIMO Network With Variable-Resolution ADCs

This paper concentrates on cell-free massive multiple-input and multiple-output (MIMO) network with variable-resolution analog-to-digital converters (ADCs). In such an architecture, all ADCs equipping at any access point (AP) can use arbitrary bit resolution to realize adaptive quantization and redu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2023-01, Vol.71 (1), p.67-82
Hauptverfasser: Xiong, Youzhi, Sun, Sanshan, Liu, Li, Zhang, Zhongpei, Wei, Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82
container_issue 1
container_start_page 67
container_title IEEE transactions on communications
container_volume 71
creator Xiong, Youzhi
Sun, Sanshan
Liu, Li
Zhang, Zhongpei
Wei, Ning
description This paper concentrates on cell-free massive multiple-input and multiple-output (MIMO) network with variable-resolution analog-to-digital converters (ADCs). In such an architecture, all ADCs equipping at any access point (AP) can use arbitrary bit resolution to realize adaptive quantization and reduce power consumption. Under this circumstance, we first introduce a quantization-aware channel estimator based on linear minimum mean-square error (LMMSE) theory. On this basis, intra-AP and inter-AP bit allocation problems are investigated to maximize channel estimation quality subject to the total number of quantization bits. By leveraging the statistical characteristics of the estimated channels and estimation errors, we then derive the theoretical expressions of the achievable uplink spectral efficiency (SE) for maximal ratio combining (MRC) and minimum mean-square error (MMSE) combining, respectively. Furthermore, to maximize the sum SE under the constraint of total ADC quantization bits, we also investigate intra-AP and inter-AP bit allocation problems for both single-user and multi-user scenarios. Finally, simulation results confirm that our theoretical analyses are correct and accurate. In addition, we resort to numerical results to achieve some new insights and verify the advantages and conclusions pertinent to the proposed bit allocation techniques.
doi_str_mv 10.1109/TCOMM.2022.3225569
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9966648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9966648</ieee_id><sourcerecordid>2765175458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-b41d4f543e16921b2028b0b10af9f1141b91659dc26f93beb512e6fdcc05afbf3</originalsourceid><addsrcrecordid>eNo9kMtOwzAURC0EEqXwA7CxxDrFj9iJlyFQqNRShAosIzu9hpQ0LnYK6t-TPsRqNnNGmoPQJSUDSom6meXTyWTACGMDzpgQUh2hHhUijUgqkmPUI0SRSCZJeorOQlgQQmLCeQ99PIO3zi91UwLOGl1vQhWwbub4tmpxVteu1G3lGuwszqGuo6EHwBMdQvXT5WgyxU_Q_jr_hd-r9hO_aV9pU0P0AsHV6x2a3eXhHJ1YXQe4OGQfvQ7vZ_ljNJ4-jPJsHJWcqzYyMZ3HVsQcqFSMmu5RaoihRFtlKY2pUVQKNS-ZtIobMIIykHZelkRoayzvo-v97sq77zWEtli4te9-hYIlUtBExCLtWmzfKr0LwYMtVr5aar8pKCm2Qoud0GIrtDgI7aCrPVQBwD-glJQyTvkfVrhxjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765175458</pqid></control><display><type>article</type><title>Performance Analysis and Bit Allocation of Cell-Free Massive MIMO Network With Variable-Resolution ADCs</title><source>IEEE Electronic Library (IEL)</source><creator>Xiong, Youzhi ; Sun, Sanshan ; Liu, Li ; Zhang, Zhongpei ; Wei, Ning</creator><creatorcontrib>Xiong, Youzhi ; Sun, Sanshan ; Liu, Li ; Zhang, Zhongpei ; Wei, Ning</creatorcontrib><description>This paper concentrates on cell-free massive multiple-input and multiple-output (MIMO) network with variable-resolution analog-to-digital converters (ADCs). In such an architecture, all ADCs equipping at any access point (AP) can use arbitrary bit resolution to realize adaptive quantization and reduce power consumption. Under this circumstance, we first introduce a quantization-aware channel estimator based on linear minimum mean-square error (LMMSE) theory. On this basis, intra-AP and inter-AP bit allocation problems are investigated to maximize channel estimation quality subject to the total number of quantization bits. By leveraging the statistical characteristics of the estimated channels and estimation errors, we then derive the theoretical expressions of the achievable uplink spectral efficiency (SE) for maximal ratio combining (MRC) and minimum mean-square error (MMSE) combining, respectively. Furthermore, to maximize the sum SE under the constraint of total ADC quantization bits, we also investigate intra-AP and inter-AP bit allocation problems for both single-user and multi-user scenarios. Finally, simulation results confirm that our theoretical analyses are correct and accurate. In addition, we resort to numerical results to achieve some new insights and verify the advantages and conclusions pertinent to the proposed bit allocation techniques.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2022.3225569</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analog to digital converters ; bit allocation ; Bit rate ; Cell-free massive MIMO ; Channel estimation ; Codes ; Massive MIMO ; Measurement ; MIMO communication ; MMSE ; MRC ; Optimization ; Power consumption ; Quantization (signal) ; Spatial resolution ; Uplink ; variable-resolution ADCs</subject><ispartof>IEEE transactions on communications, 2023-01, Vol.71 (1), p.67-82</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-b41d4f543e16921b2028b0b10af9f1141b91659dc26f93beb512e6fdcc05afbf3</citedby><cites>FETCH-LOGICAL-c339t-b41d4f543e16921b2028b0b10af9f1141b91659dc26f93beb512e6fdcc05afbf3</cites><orcidid>0000-0002-5344-8373 ; 0000-0001-7126-0967 ; 0000-0002-3936-7526 ; 0000-0003-2772-9937 ; 0000-0002-4076-4828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9966648$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9966648$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiong, Youzhi</creatorcontrib><creatorcontrib>Sun, Sanshan</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Zhang, Zhongpei</creatorcontrib><creatorcontrib>Wei, Ning</creatorcontrib><title>Performance Analysis and Bit Allocation of Cell-Free Massive MIMO Network With Variable-Resolution ADCs</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>This paper concentrates on cell-free massive multiple-input and multiple-output (MIMO) network with variable-resolution analog-to-digital converters (ADCs). In such an architecture, all ADCs equipping at any access point (AP) can use arbitrary bit resolution to realize adaptive quantization and reduce power consumption. Under this circumstance, we first introduce a quantization-aware channel estimator based on linear minimum mean-square error (LMMSE) theory. On this basis, intra-AP and inter-AP bit allocation problems are investigated to maximize channel estimation quality subject to the total number of quantization bits. By leveraging the statistical characteristics of the estimated channels and estimation errors, we then derive the theoretical expressions of the achievable uplink spectral efficiency (SE) for maximal ratio combining (MRC) and minimum mean-square error (MMSE) combining, respectively. Furthermore, to maximize the sum SE under the constraint of total ADC quantization bits, we also investigate intra-AP and inter-AP bit allocation problems for both single-user and multi-user scenarios. Finally, simulation results confirm that our theoretical analyses are correct and accurate. In addition, we resort to numerical results to achieve some new insights and verify the advantages and conclusions pertinent to the proposed bit allocation techniques.</description><subject>Analog to digital converters</subject><subject>bit allocation</subject><subject>Bit rate</subject><subject>Cell-free massive MIMO</subject><subject>Channel estimation</subject><subject>Codes</subject><subject>Massive MIMO</subject><subject>Measurement</subject><subject>MIMO communication</subject><subject>MMSE</subject><subject>MRC</subject><subject>Optimization</subject><subject>Power consumption</subject><subject>Quantization (signal)</subject><subject>Spatial resolution</subject><subject>Uplink</subject><subject>variable-resolution ADCs</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAURC0EEqXwA7CxxDrFj9iJlyFQqNRShAosIzu9hpQ0LnYK6t-TPsRqNnNGmoPQJSUDSom6meXTyWTACGMDzpgQUh2hHhUijUgqkmPUI0SRSCZJeorOQlgQQmLCeQ99PIO3zi91UwLOGl1vQhWwbub4tmpxVteu1G3lGuwszqGuo6EHwBMdQvXT5WgyxU_Q_jr_hd-r9hO_aV9pU0P0AsHV6x2a3eXhHJ1YXQe4OGQfvQ7vZ_ljNJ4-jPJsHJWcqzYyMZ3HVsQcqFSMmu5RaoihRFtlKY2pUVQKNS-ZtIobMIIykHZelkRoayzvo-v97sq77zWEtli4te9-hYIlUtBExCLtWmzfKr0LwYMtVr5aar8pKCm2Qoud0GIrtDgI7aCrPVQBwD-glJQyTvkfVrhxjQ</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Xiong, Youzhi</creator><creator>Sun, Sanshan</creator><creator>Liu, Li</creator><creator>Zhang, Zhongpei</creator><creator>Wei, Ning</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5344-8373</orcidid><orcidid>https://orcid.org/0000-0001-7126-0967</orcidid><orcidid>https://orcid.org/0000-0002-3936-7526</orcidid><orcidid>https://orcid.org/0000-0003-2772-9937</orcidid><orcidid>https://orcid.org/0000-0002-4076-4828</orcidid></search><sort><creationdate>202301</creationdate><title>Performance Analysis and Bit Allocation of Cell-Free Massive MIMO Network With Variable-Resolution ADCs</title><author>Xiong, Youzhi ; Sun, Sanshan ; Liu, Li ; Zhang, Zhongpei ; Wei, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-b41d4f543e16921b2028b0b10af9f1141b91659dc26f93beb512e6fdcc05afbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analog to digital converters</topic><topic>bit allocation</topic><topic>Bit rate</topic><topic>Cell-free massive MIMO</topic><topic>Channel estimation</topic><topic>Codes</topic><topic>Massive MIMO</topic><topic>Measurement</topic><topic>MIMO communication</topic><topic>MMSE</topic><topic>MRC</topic><topic>Optimization</topic><topic>Power consumption</topic><topic>Quantization (signal)</topic><topic>Spatial resolution</topic><topic>Uplink</topic><topic>variable-resolution ADCs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Youzhi</creatorcontrib><creatorcontrib>Sun, Sanshan</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Zhang, Zhongpei</creatorcontrib><creatorcontrib>Wei, Ning</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiong, Youzhi</au><au>Sun, Sanshan</au><au>Liu, Li</au><au>Zhang, Zhongpei</au><au>Wei, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis and Bit Allocation of Cell-Free Massive MIMO Network With Variable-Resolution ADCs</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2023-01</date><risdate>2023</risdate><volume>71</volume><issue>1</issue><spage>67</spage><epage>82</epage><pages>67-82</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>This paper concentrates on cell-free massive multiple-input and multiple-output (MIMO) network with variable-resolution analog-to-digital converters (ADCs). In such an architecture, all ADCs equipping at any access point (AP) can use arbitrary bit resolution to realize adaptive quantization and reduce power consumption. Under this circumstance, we first introduce a quantization-aware channel estimator based on linear minimum mean-square error (LMMSE) theory. On this basis, intra-AP and inter-AP bit allocation problems are investigated to maximize channel estimation quality subject to the total number of quantization bits. By leveraging the statistical characteristics of the estimated channels and estimation errors, we then derive the theoretical expressions of the achievable uplink spectral efficiency (SE) for maximal ratio combining (MRC) and minimum mean-square error (MMSE) combining, respectively. Furthermore, to maximize the sum SE under the constraint of total ADC quantization bits, we also investigate intra-AP and inter-AP bit allocation problems for both single-user and multi-user scenarios. Finally, simulation results confirm that our theoretical analyses are correct and accurate. In addition, we resort to numerical results to achieve some new insights and verify the advantages and conclusions pertinent to the proposed bit allocation techniques.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2022.3225569</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5344-8373</orcidid><orcidid>https://orcid.org/0000-0001-7126-0967</orcidid><orcidid>https://orcid.org/0000-0002-3936-7526</orcidid><orcidid>https://orcid.org/0000-0003-2772-9937</orcidid><orcidid>https://orcid.org/0000-0002-4076-4828</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2023-01, Vol.71 (1), p.67-82
issn 0090-6778
1558-0857
language eng
recordid cdi_ieee_primary_9966648
source IEEE Electronic Library (IEL)
subjects Analog to digital converters
bit allocation
Bit rate
Cell-free massive MIMO
Channel estimation
Codes
Massive MIMO
Measurement
MIMO communication
MMSE
MRC
Optimization
Power consumption
Quantization (signal)
Spatial resolution
Uplink
variable-resolution ADCs
title Performance Analysis and Bit Allocation of Cell-Free Massive MIMO Network With Variable-Resolution ADCs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20and%20Bit%20Allocation%20of%20Cell-Free%20Massive%20MIMO%20Network%20With%20Variable-Resolution%20ADCs&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Xiong,%20Youzhi&rft.date=2023-01&rft.volume=71&rft.issue=1&rft.spage=67&rft.epage=82&rft.pages=67-82&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2022.3225569&rft_dat=%3Cproquest_RIE%3E2765175458%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765175458&rft_id=info:pmid/&rft_ieee_id=9966648&rfr_iscdi=true