Performance Analysis and Bit Allocation of Cell-Free Massive MIMO Network With Variable-Resolution ADCs
This paper concentrates on cell-free massive multiple-input and multiple-output (MIMO) network with variable-resolution analog-to-digital converters (ADCs). In such an architecture, all ADCs equipping at any access point (AP) can use arbitrary bit resolution to realize adaptive quantization and redu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2023-01, Vol.71 (1), p.67-82 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 82 |
---|---|
container_issue | 1 |
container_start_page | 67 |
container_title | IEEE transactions on communications |
container_volume | 71 |
creator | Xiong, Youzhi Sun, Sanshan Liu, Li Zhang, Zhongpei Wei, Ning |
description | This paper concentrates on cell-free massive multiple-input and multiple-output (MIMO) network with variable-resolution analog-to-digital converters (ADCs). In such an architecture, all ADCs equipping at any access point (AP) can use arbitrary bit resolution to realize adaptive quantization and reduce power consumption. Under this circumstance, we first introduce a quantization-aware channel estimator based on linear minimum mean-square error (LMMSE) theory. On this basis, intra-AP and inter-AP bit allocation problems are investigated to maximize channel estimation quality subject to the total number of quantization bits. By leveraging the statistical characteristics of the estimated channels and estimation errors, we then derive the theoretical expressions of the achievable uplink spectral efficiency (SE) for maximal ratio combining (MRC) and minimum mean-square error (MMSE) combining, respectively. Furthermore, to maximize the sum SE under the constraint of total ADC quantization bits, we also investigate intra-AP and inter-AP bit allocation problems for both single-user and multi-user scenarios. Finally, simulation results confirm that our theoretical analyses are correct and accurate. In addition, we resort to numerical results to achieve some new insights and verify the advantages and conclusions pertinent to the proposed bit allocation techniques. |
doi_str_mv | 10.1109/TCOMM.2022.3225569 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9966648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9966648</ieee_id><sourcerecordid>2765175458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-b41d4f543e16921b2028b0b10af9f1141b91659dc26f93beb512e6fdcc05afbf3</originalsourceid><addsrcrecordid>eNo9kMtOwzAURC0EEqXwA7CxxDrFj9iJlyFQqNRShAosIzu9hpQ0LnYK6t-TPsRqNnNGmoPQJSUDSom6meXTyWTACGMDzpgQUh2hHhUijUgqkmPUI0SRSCZJeorOQlgQQmLCeQ99PIO3zi91UwLOGl1vQhWwbub4tmpxVteu1G3lGuwszqGuo6EHwBMdQvXT5WgyxU_Q_jr_hd-r9hO_aV9pU0P0AsHV6x2a3eXhHJ1YXQe4OGQfvQ7vZ_ljNJ4-jPJsHJWcqzYyMZ3HVsQcqFSMmu5RaoihRFtlKY2pUVQKNS-ZtIobMIIykHZelkRoayzvo-v97sq77zWEtli4te9-hYIlUtBExCLtWmzfKr0LwYMtVr5aar8pKCm2Qoud0GIrtDgI7aCrPVQBwD-glJQyTvkfVrhxjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765175458</pqid></control><display><type>article</type><title>Performance Analysis and Bit Allocation of Cell-Free Massive MIMO Network With Variable-Resolution ADCs</title><source>IEEE Electronic Library (IEL)</source><creator>Xiong, Youzhi ; Sun, Sanshan ; Liu, Li ; Zhang, Zhongpei ; Wei, Ning</creator><creatorcontrib>Xiong, Youzhi ; Sun, Sanshan ; Liu, Li ; Zhang, Zhongpei ; Wei, Ning</creatorcontrib><description>This paper concentrates on cell-free massive multiple-input and multiple-output (MIMO) network with variable-resolution analog-to-digital converters (ADCs). In such an architecture, all ADCs equipping at any access point (AP) can use arbitrary bit resolution to realize adaptive quantization and reduce power consumption. Under this circumstance, we first introduce a quantization-aware channel estimator based on linear minimum mean-square error (LMMSE) theory. On this basis, intra-AP and inter-AP bit allocation problems are investigated to maximize channel estimation quality subject to the total number of quantization bits. By leveraging the statistical characteristics of the estimated channels and estimation errors, we then derive the theoretical expressions of the achievable uplink spectral efficiency (SE) for maximal ratio combining (MRC) and minimum mean-square error (MMSE) combining, respectively. Furthermore, to maximize the sum SE under the constraint of total ADC quantization bits, we also investigate intra-AP and inter-AP bit allocation problems for both single-user and multi-user scenarios. Finally, simulation results confirm that our theoretical analyses are correct and accurate. In addition, we resort to numerical results to achieve some new insights and verify the advantages and conclusions pertinent to the proposed bit allocation techniques.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2022.3225569</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analog to digital converters ; bit allocation ; Bit rate ; Cell-free massive MIMO ; Channel estimation ; Codes ; Massive MIMO ; Measurement ; MIMO communication ; MMSE ; MRC ; Optimization ; Power consumption ; Quantization (signal) ; Spatial resolution ; Uplink ; variable-resolution ADCs</subject><ispartof>IEEE transactions on communications, 2023-01, Vol.71 (1), p.67-82</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-b41d4f543e16921b2028b0b10af9f1141b91659dc26f93beb512e6fdcc05afbf3</citedby><cites>FETCH-LOGICAL-c339t-b41d4f543e16921b2028b0b10af9f1141b91659dc26f93beb512e6fdcc05afbf3</cites><orcidid>0000-0002-5344-8373 ; 0000-0001-7126-0967 ; 0000-0002-3936-7526 ; 0000-0003-2772-9937 ; 0000-0002-4076-4828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9966648$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9966648$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiong, Youzhi</creatorcontrib><creatorcontrib>Sun, Sanshan</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Zhang, Zhongpei</creatorcontrib><creatorcontrib>Wei, Ning</creatorcontrib><title>Performance Analysis and Bit Allocation of Cell-Free Massive MIMO Network With Variable-Resolution ADCs</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>This paper concentrates on cell-free massive multiple-input and multiple-output (MIMO) network with variable-resolution analog-to-digital converters (ADCs). In such an architecture, all ADCs equipping at any access point (AP) can use arbitrary bit resolution to realize adaptive quantization and reduce power consumption. Under this circumstance, we first introduce a quantization-aware channel estimator based on linear minimum mean-square error (LMMSE) theory. On this basis, intra-AP and inter-AP bit allocation problems are investigated to maximize channel estimation quality subject to the total number of quantization bits. By leveraging the statistical characteristics of the estimated channels and estimation errors, we then derive the theoretical expressions of the achievable uplink spectral efficiency (SE) for maximal ratio combining (MRC) and minimum mean-square error (MMSE) combining, respectively. Furthermore, to maximize the sum SE under the constraint of total ADC quantization bits, we also investigate intra-AP and inter-AP bit allocation problems for both single-user and multi-user scenarios. Finally, simulation results confirm that our theoretical analyses are correct and accurate. In addition, we resort to numerical results to achieve some new insights and verify the advantages and conclusions pertinent to the proposed bit allocation techniques.</description><subject>Analog to digital converters</subject><subject>bit allocation</subject><subject>Bit rate</subject><subject>Cell-free massive MIMO</subject><subject>Channel estimation</subject><subject>Codes</subject><subject>Massive MIMO</subject><subject>Measurement</subject><subject>MIMO communication</subject><subject>MMSE</subject><subject>MRC</subject><subject>Optimization</subject><subject>Power consumption</subject><subject>Quantization (signal)</subject><subject>Spatial resolution</subject><subject>Uplink</subject><subject>variable-resolution ADCs</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAURC0EEqXwA7CxxDrFj9iJlyFQqNRShAosIzu9hpQ0LnYK6t-TPsRqNnNGmoPQJSUDSom6meXTyWTACGMDzpgQUh2hHhUijUgqkmPUI0SRSCZJeorOQlgQQmLCeQ99PIO3zi91UwLOGl1vQhWwbub4tmpxVteu1G3lGuwszqGuo6EHwBMdQvXT5WgyxU_Q_jr_hd-r9hO_aV9pU0P0AsHV6x2a3eXhHJ1YXQe4OGQfvQ7vZ_ljNJ4-jPJsHJWcqzYyMZ3HVsQcqFSMmu5RaoihRFtlKY2pUVQKNS-ZtIobMIIykHZelkRoayzvo-v97sq77zWEtli4te9-hYIlUtBExCLtWmzfKr0LwYMtVr5aar8pKCm2Qoud0GIrtDgI7aCrPVQBwD-glJQyTvkfVrhxjQ</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Xiong, Youzhi</creator><creator>Sun, Sanshan</creator><creator>Liu, Li</creator><creator>Zhang, Zhongpei</creator><creator>Wei, Ning</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5344-8373</orcidid><orcidid>https://orcid.org/0000-0001-7126-0967</orcidid><orcidid>https://orcid.org/0000-0002-3936-7526</orcidid><orcidid>https://orcid.org/0000-0003-2772-9937</orcidid><orcidid>https://orcid.org/0000-0002-4076-4828</orcidid></search><sort><creationdate>202301</creationdate><title>Performance Analysis and Bit Allocation of Cell-Free Massive MIMO Network With Variable-Resolution ADCs</title><author>Xiong, Youzhi ; Sun, Sanshan ; Liu, Li ; Zhang, Zhongpei ; Wei, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-b41d4f543e16921b2028b0b10af9f1141b91659dc26f93beb512e6fdcc05afbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analog to digital converters</topic><topic>bit allocation</topic><topic>Bit rate</topic><topic>Cell-free massive MIMO</topic><topic>Channel estimation</topic><topic>Codes</topic><topic>Massive MIMO</topic><topic>Measurement</topic><topic>MIMO communication</topic><topic>MMSE</topic><topic>MRC</topic><topic>Optimization</topic><topic>Power consumption</topic><topic>Quantization (signal)</topic><topic>Spatial resolution</topic><topic>Uplink</topic><topic>variable-resolution ADCs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Youzhi</creatorcontrib><creatorcontrib>Sun, Sanshan</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Zhang, Zhongpei</creatorcontrib><creatorcontrib>Wei, Ning</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiong, Youzhi</au><au>Sun, Sanshan</au><au>Liu, Li</au><au>Zhang, Zhongpei</au><au>Wei, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis and Bit Allocation of Cell-Free Massive MIMO Network With Variable-Resolution ADCs</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2023-01</date><risdate>2023</risdate><volume>71</volume><issue>1</issue><spage>67</spage><epage>82</epage><pages>67-82</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>This paper concentrates on cell-free massive multiple-input and multiple-output (MIMO) network with variable-resolution analog-to-digital converters (ADCs). In such an architecture, all ADCs equipping at any access point (AP) can use arbitrary bit resolution to realize adaptive quantization and reduce power consumption. Under this circumstance, we first introduce a quantization-aware channel estimator based on linear minimum mean-square error (LMMSE) theory. On this basis, intra-AP and inter-AP bit allocation problems are investigated to maximize channel estimation quality subject to the total number of quantization bits. By leveraging the statistical characteristics of the estimated channels and estimation errors, we then derive the theoretical expressions of the achievable uplink spectral efficiency (SE) for maximal ratio combining (MRC) and minimum mean-square error (MMSE) combining, respectively. Furthermore, to maximize the sum SE under the constraint of total ADC quantization bits, we also investigate intra-AP and inter-AP bit allocation problems for both single-user and multi-user scenarios. Finally, simulation results confirm that our theoretical analyses are correct and accurate. In addition, we resort to numerical results to achieve some new insights and verify the advantages and conclusions pertinent to the proposed bit allocation techniques.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2022.3225569</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5344-8373</orcidid><orcidid>https://orcid.org/0000-0001-7126-0967</orcidid><orcidid>https://orcid.org/0000-0002-3936-7526</orcidid><orcidid>https://orcid.org/0000-0003-2772-9937</orcidid><orcidid>https://orcid.org/0000-0002-4076-4828</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2023-01, Vol.71 (1), p.67-82 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_ieee_primary_9966648 |
source | IEEE Electronic Library (IEL) |
subjects | Analog to digital converters bit allocation Bit rate Cell-free massive MIMO Channel estimation Codes Massive MIMO Measurement MIMO communication MMSE MRC Optimization Power consumption Quantization (signal) Spatial resolution Uplink variable-resolution ADCs |
title | Performance Analysis and Bit Allocation of Cell-Free Massive MIMO Network With Variable-Resolution ADCs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20and%20Bit%20Allocation%20of%20Cell-Free%20Massive%20MIMO%20Network%20With%20Variable-Resolution%20ADCs&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Xiong,%20Youzhi&rft.date=2023-01&rft.volume=71&rft.issue=1&rft.spage=67&rft.epage=82&rft.pages=67-82&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2022.3225569&rft_dat=%3Cproquest_RIE%3E2765175458%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765175458&rft_id=info:pmid/&rft_ieee_id=9966648&rfr_iscdi=true |