Adaptive Dual-path Collaborative Learning for PAN and MS Classification
Due to the limitation of sensor technology, researchers tend to obtain high-quality image information from panchromatic (PAN) images and multispectral (MS) images with different resolutions. Therefore, the classification of remote sensing images of PAN and MS have become a research hotspot. In this...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Zhu, Hao Sun, Kenan Jiao, Licheng Li, Xiaotong Liu, Fang Hou, Biao Wang, Shuang |
description | Due to the limitation of sensor technology, researchers tend to obtain high-quality image information from panchromatic (PAN) images and multispectral (MS) images with different resolutions. Therefore, the classification of remote sensing images of PAN and MS have become a research hotspot. In this paper, we propose an adaptive dual-path collaborative learning method for PAN and MS classification. In the stage of sample generation and training, we propose an adaptive neighborhood sample grading (ANSG) strategy in the establishing sample stage so that each pixel to be classified can obtain neighborhood information suitable for itself. Further, to simulate biological cognitive mechanisms, we divide the samples into different levels, and design the self-paced progressive loss (SPL), thus allowing the network to do preference training in different stages. The network's training can quickly reach the optimal of the current stage and the overall convergence is more thorough. In the network structure, we propose a dual-path module (DPM) to effectively alleviate the gradient degradation in the residual path , while ensuring maximum gradient loss information flow between every two layers in the densely connected path . This module can extract more robust features to cope with the complex characteristics of remote-sensing images. Moreover, using the characteristics of the dual path to better fuse the features by the gradual collaborative fusion (GCF) way. The experimental results and theoretical analysis have demonstrated the proposed approach's effectiveness, feasibility, and robustness. Our model are available at https://github.com/AIpy-nan/DBFI-Net. |
doi_str_mv | 10.1109/TGRS.2022.3223921 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9957095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9957095</ieee_id><sourcerecordid>2745128110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e48d13ba540bd28d989cb91834ca4f292fbfb34816e4feb2d51c280ad09a3dfa3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwseN6aTJI2OZZVq1A_sPUcJptEV9bdNdkK_nu3tngaGJ73HeYh5JzRCWNUX60XL6sJUIAJB-Aa2AEZMSlVTqdCHJIRZXqag9JwTE5S-qCUCclmI7KYO-z66ttn1xus8w7796xo6xptG_Fvv_QYm6p5y0Ibs-f5Y4aNyx5WWVFjSlWoygFrm1NyFLBO_mw_x-T19mZd3OXLp8V9MV_mJWje514ox7hFKah1oJxWurSaKS5KFAE0BBssF4pNvQjegpOsBEXRUY3cBeRjcrnr7WL7tfGpNx_tJjbDSQOz4SVQg46BYjuqjG1K0QfTxeoT449h1Gx9ma0vs_Vl9r6GzMUuU3nv_3mt5YxqyX8BVThl-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2745128110</pqid></control><display><type>article</type><title>Adaptive Dual-path Collaborative Learning for PAN and MS Classification</title><source>IEEE Electronic Library Online</source><creator>Zhu, Hao ; Sun, Kenan ; Jiao, Licheng ; Li, Xiaotong ; Liu, Fang ; Hou, Biao ; Wang, Shuang</creator><creatorcontrib>Zhu, Hao ; Sun, Kenan ; Jiao, Licheng ; Li, Xiaotong ; Liu, Fang ; Hou, Biao ; Wang, Shuang</creatorcontrib><description>Due to the limitation of sensor technology, researchers tend to obtain high-quality image information from panchromatic (PAN) images and multispectral (MS) images with different resolutions. Therefore, the classification of remote sensing images of PAN and MS have become a research hotspot. In this paper, we propose an adaptive dual-path collaborative learning method for PAN and MS classification. In the stage of sample generation and training, we propose an adaptive neighborhood sample grading (ANSG) strategy in the establishing sample stage so that each pixel to be classified can obtain neighborhood information suitable for itself. Further, to simulate biological cognitive mechanisms, we divide the samples into different levels, and design the self-paced progressive loss (SPL), thus allowing the network to do preference training in different stages. The network's training can quickly reach the optimal of the current stage and the overall convergence is more thorough. In the network structure, we propose a dual-path module (DPM) to effectively alleviate the gradient degradation in the residual path , while ensuring maximum gradient loss information flow between every two layers in the densely connected path . This module can extract more robust features to cope with the complex characteristics of remote-sensing images. Moreover, using the characteristics of the dual path to better fuse the features by the gradual collaborative fusion (GCF) way. The experimental results and theoretical analysis have demonstrated the proposed approach's effectiveness, feasibility, and robustness. Our model are available at https://github.com/AIpy-nan/DBFI-Net.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3223921</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive sampling ; Classification ; Classification algorithms ; Cognitive ability ; Collaborative learning ; Deep Learning ; Distortion ; Dogs ; Feature extraction ; Feature Fusion ; Image classification ; Image quality ; Information flow ; Learning ; Mathematical models ; Modules ; PAN and MS Classification ; Remote Sensing ; Sample Strategy ; Sensors ; Theoretical analysis ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e48d13ba540bd28d989cb91834ca4f292fbfb34816e4feb2d51c280ad09a3dfa3</citedby><cites>FETCH-LOGICAL-c293t-e48d13ba540bd28d989cb91834ca4f292fbfb34816e4feb2d51c280ad09a3dfa3</cites><orcidid>0000-0003-4411-0933 ; 0000-0001-9960-5373 ; 0000-0002-1996-186X ; 0000-0003-4940-1211 ; 0000-0002-5669-9354 ; 0000-0003-3354-9617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9957095$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9957095$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Hao</creatorcontrib><creatorcontrib>Sun, Kenan</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><creatorcontrib>Li, Xiaotong</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Hou, Biao</creatorcontrib><creatorcontrib>Wang, Shuang</creatorcontrib><title>Adaptive Dual-path Collaborative Learning for PAN and MS Classification</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Due to the limitation of sensor technology, researchers tend to obtain high-quality image information from panchromatic (PAN) images and multispectral (MS) images with different resolutions. Therefore, the classification of remote sensing images of PAN and MS have become a research hotspot. In this paper, we propose an adaptive dual-path collaborative learning method for PAN and MS classification. In the stage of sample generation and training, we propose an adaptive neighborhood sample grading (ANSG) strategy in the establishing sample stage so that each pixel to be classified can obtain neighborhood information suitable for itself. Further, to simulate biological cognitive mechanisms, we divide the samples into different levels, and design the self-paced progressive loss (SPL), thus allowing the network to do preference training in different stages. The network's training can quickly reach the optimal of the current stage and the overall convergence is more thorough. In the network structure, we propose a dual-path module (DPM) to effectively alleviate the gradient degradation in the residual path , while ensuring maximum gradient loss information flow between every two layers in the densely connected path . This module can extract more robust features to cope with the complex characteristics of remote-sensing images. Moreover, using the characteristics of the dual path to better fuse the features by the gradual collaborative fusion (GCF) way. The experimental results and theoretical analysis have demonstrated the proposed approach's effectiveness, feasibility, and robustness. Our model are available at https://github.com/AIpy-nan/DBFI-Net.</description><subject>Adaptive sampling</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Cognitive ability</subject><subject>Collaborative learning</subject><subject>Deep Learning</subject><subject>Distortion</subject><subject>Dogs</subject><subject>Feature extraction</subject><subject>Feature Fusion</subject><subject>Image classification</subject><subject>Image quality</subject><subject>Information flow</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Modules</subject><subject>PAN and MS Classification</subject><subject>Remote Sensing</subject><subject>Sample Strategy</subject><subject>Sensors</subject><subject>Theoretical analysis</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwseN6aTJI2OZZVq1A_sPUcJptEV9bdNdkK_nu3tngaGJ73HeYh5JzRCWNUX60XL6sJUIAJB-Aa2AEZMSlVTqdCHJIRZXqag9JwTE5S-qCUCclmI7KYO-z66ttn1xus8w7796xo6xptG_Fvv_QYm6p5y0Ibs-f5Y4aNyx5WWVFjSlWoygFrm1NyFLBO_mw_x-T19mZd3OXLp8V9MV_mJWje514ox7hFKah1oJxWurSaKS5KFAE0BBssF4pNvQjegpOsBEXRUY3cBeRjcrnr7WL7tfGpNx_tJjbDSQOz4SVQg46BYjuqjG1K0QfTxeoT449h1Gx9ma0vs_Vl9r6GzMUuU3nv_3mt5YxqyX8BVThl-w</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhu, Hao</creator><creator>Sun, Kenan</creator><creator>Jiao, Licheng</creator><creator>Li, Xiaotong</creator><creator>Liu, Fang</creator><creator>Hou, Biao</creator><creator>Wang, Shuang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4411-0933</orcidid><orcidid>https://orcid.org/0000-0001-9960-5373</orcidid><orcidid>https://orcid.org/0000-0002-1996-186X</orcidid><orcidid>https://orcid.org/0000-0003-4940-1211</orcidid><orcidid>https://orcid.org/0000-0002-5669-9354</orcidid><orcidid>https://orcid.org/0000-0003-3354-9617</orcidid></search><sort><creationdate>2022</creationdate><title>Adaptive Dual-path Collaborative Learning for PAN and MS Classification</title><author>Zhu, Hao ; Sun, Kenan ; Jiao, Licheng ; Li, Xiaotong ; Liu, Fang ; Hou, Biao ; Wang, Shuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e48d13ba540bd28d989cb91834ca4f292fbfb34816e4feb2d51c280ad09a3dfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive sampling</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Cognitive ability</topic><topic>Collaborative learning</topic><topic>Deep Learning</topic><topic>Distortion</topic><topic>Dogs</topic><topic>Feature extraction</topic><topic>Feature Fusion</topic><topic>Image classification</topic><topic>Image quality</topic><topic>Information flow</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Modules</topic><topic>PAN and MS Classification</topic><topic>Remote Sensing</topic><topic>Sample Strategy</topic><topic>Sensors</topic><topic>Theoretical analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Hao</creatorcontrib><creatorcontrib>Sun, Kenan</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><creatorcontrib>Li, Xiaotong</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Hou, Biao</creatorcontrib><creatorcontrib>Wang, Shuang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Hao</au><au>Sun, Kenan</au><au>Jiao, Licheng</au><au>Li, Xiaotong</au><au>Liu, Fang</au><au>Hou, Biao</au><au>Wang, Shuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Dual-path Collaborative Learning for PAN and MS Classification</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Due to the limitation of sensor technology, researchers tend to obtain high-quality image information from panchromatic (PAN) images and multispectral (MS) images with different resolutions. Therefore, the classification of remote sensing images of PAN and MS have become a research hotspot. In this paper, we propose an adaptive dual-path collaborative learning method for PAN and MS classification. In the stage of sample generation and training, we propose an adaptive neighborhood sample grading (ANSG) strategy in the establishing sample stage so that each pixel to be classified can obtain neighborhood information suitable for itself. Further, to simulate biological cognitive mechanisms, we divide the samples into different levels, and design the self-paced progressive loss (SPL), thus allowing the network to do preference training in different stages. The network's training can quickly reach the optimal of the current stage and the overall convergence is more thorough. In the network structure, we propose a dual-path module (DPM) to effectively alleviate the gradient degradation in the residual path , while ensuring maximum gradient loss information flow between every two layers in the densely connected path . This module can extract more robust features to cope with the complex characteristics of remote-sensing images. Moreover, using the characteristics of the dual path to better fuse the features by the gradual collaborative fusion (GCF) way. The experimental results and theoretical analysis have demonstrated the proposed approach's effectiveness, feasibility, and robustness. Our model are available at https://github.com/AIpy-nan/DBFI-Net.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3223921</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4411-0933</orcidid><orcidid>https://orcid.org/0000-0001-9960-5373</orcidid><orcidid>https://orcid.org/0000-0002-1996-186X</orcidid><orcidid>https://orcid.org/0000-0003-4940-1211</orcidid><orcidid>https://orcid.org/0000-0002-5669-9354</orcidid><orcidid>https://orcid.org/0000-0003-3354-9617</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-1 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_9957095 |
source | IEEE Electronic Library Online |
subjects | Adaptive sampling Classification Classification algorithms Cognitive ability Collaborative learning Deep Learning Distortion Dogs Feature extraction Feature Fusion Image classification Image quality Information flow Learning Mathematical models Modules PAN and MS Classification Remote Sensing Sample Strategy Sensors Theoretical analysis Training |
title | Adaptive Dual-path Collaborative Learning for PAN and MS Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A13%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Dual-path%20Collaborative%20Learning%20for%20PAN%20and%20MS%20Classification&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhu,%20Hao&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3223921&rft_dat=%3Cproquest_RIE%3E2745128110%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2745128110&rft_id=info:pmid/&rft_ieee_id=9957095&rfr_iscdi=true |