Effect of Carrier Transport Process on Tunneling Electroresistance in Ferroelectric Tunnel Junction

We demonstrate the factors that determine the tunneling electroresistance (TER) of the ferroelectric tunnel junction (FTJ) by investigating the effects of temperature ( {T} ) and the number of cycles ( {N}{)} on remnant polarization ( {P}_{\text {r}}{)} and carrier transport process. The fabricate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2023-01, Vol.44 (1), p.164-167
Hauptverfasser: Koo, Ryun-Han, Shin, Wonjun, Min, Kyung Kyu, Kwon, Dongseok, Kim, Dae Hwan, Kim, Jae-Joon, Kwon, Daewoong, Lee, Jong-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue 1
container_start_page 164
container_title IEEE electron device letters
container_volume 44
creator Koo, Ryun-Han
Shin, Wonjun
Min, Kyung Kyu
Kwon, Dongseok
Kim, Dae Hwan
Kim, Jae-Joon
Kwon, Daewoong
Lee, Jong-Ho
description We demonstrate the factors that determine the tunneling electroresistance (TER) of the ferroelectric tunnel junction (FTJ) by investigating the effects of temperature ( {T} ) and the number of cycles ( {N}{)} on remnant polarization ( {P}_{\text {r}}{)} and carrier transport process. The fabricated FTJs have a metal/ferroelectric/insulator/semiconductor structure. The {P}_{\text {r}} is increased with increasing {T} and {N} due to oxygen vacancy redistribution. However, the increased {P}_{\text {r}} in a higher {T} and {N} does not improve the TER ratio. Using current-voltage characterization and low-frequency noise spectroscopy, we reveal that the carrier transport process at the interface between the ferroelectric and dielectric layers becomes more important than {P}_{\text {r}} in determining the TER ratio.
doi_str_mv 10.1109/LED.2022.3223340
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9955552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9955552</ieee_id><sourcerecordid>2758714771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-726971fbd4c4104078b1ebbdb2bf6d8eb78b8bb741a200cbcfff8b48cd2f466e3</originalsourceid><addsrcrecordid>eNo9kEtLAzEQgIMoWKt3wUvA89a8dpM9St36oKCHeg6b7ERSalKT3YP_3miLcxmY-WaG-RC6pmRBKWnv1t3DghHGFpwxzgU5QTNa16oidcNP0YxIQStOSXOOLnLeEkKFkGKGbOcc2BFHh5d9Sh4S3qQ-5H1MI35L0ULOOAa8mUKAnQ8fuNsVPsUE2eexDxawD3gFKUX463h7hPHLFOzoY7hEZ67fZbg65jl6X3Wb5VO1fn18Xt6vK8u5GivJmlZSZwZhBSWCSGUoGDMYZlwzKDCloIwpj_SMEGusc04ZoezAnGga4HN0e9i7T_FrgjzqbZxSKCc1k7WSVEhJC0UOlE0x5wRO75P_7NO3pkT_qtRFpf5VqY8qy8jNYcQDwD_etnUJxn8AsR1xVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758714771</pqid></control><display><type>article</type><title>Effect of Carrier Transport Process on Tunneling Electroresistance in Ferroelectric Tunnel Junction</title><source>IEEE Electronic Library (IEL)</source><creator>Koo, Ryun-Han ; Shin, Wonjun ; Min, Kyung Kyu ; Kwon, Dongseok ; Kim, Dae Hwan ; Kim, Jae-Joon ; Kwon, Daewoong ; Lee, Jong-Ho</creator><creatorcontrib>Koo, Ryun-Han ; Shin, Wonjun ; Min, Kyung Kyu ; Kwon, Dongseok ; Kim, Dae Hwan ; Kim, Jae-Joon ; Kwon, Daewoong ; Lee, Jong-Ho</creatorcontrib><description><![CDATA[We demonstrate the factors that determine the tunneling electroresistance (TER) of the ferroelectric tunnel junction (FTJ) by investigating the effects of temperature (<inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula>) and the number of cycles (<inline-formula> <tex-math notation="LaTeX">{N}{)} </tex-math></inline-formula> on remnant polarization (<inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}}{)} </tex-math></inline-formula> and carrier transport process. The fabricated FTJs have a metal/ferroelectric/insulator/semiconductor structure. The <inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}} </tex-math></inline-formula> is increased with increasing <inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> due to oxygen vacancy redistribution. However, the increased <inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}} </tex-math></inline-formula> in a higher <inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> does not improve the TER ratio. Using current-voltage characterization and low-frequency noise spectroscopy, we reveal that the carrier transport process at the interface between the ferroelectric and dielectric layers becomes more important than <inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}} </tex-math></inline-formula> in determining the TER ratio.]]></description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2022.3223340</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Carrier transport ; Carrier transport mechanism ; Ferroelectric materials ; ferroelectric tunnel junction (FTJ) ; Ferroelectricity ; Hafnium oxide ; Iron ; Junctions ; LF noise ; low-frequency noise (LFN) ; Semiconductor device measurement ; Silicon ; Spectroscopy ; Temperature effects ; Transport processes ; Tunnel junctions ; Tunneling</subject><ispartof>IEEE electron device letters, 2023-01, Vol.44 (1), p.164-167</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-726971fbd4c4104078b1ebbdb2bf6d8eb78b8bb741a200cbcfff8b48cd2f466e3</citedby><cites>FETCH-LOGICAL-c338t-726971fbd4c4104078b1ebbdb2bf6d8eb78b8bb741a200cbcfff8b48cd2f466e3</cites><orcidid>0000-0001-5175-8258 ; 0000-0003-3559-9802 ; 0000-0001-6514-5348 ; 0000-0003-1159-3406 ; 0000-0001-9122-2458 ; 0000-0001-7676-8938 ; 0000-0003-2567-4012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9955552$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9955552$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Koo, Ryun-Han</creatorcontrib><creatorcontrib>Shin, Wonjun</creatorcontrib><creatorcontrib>Min, Kyung Kyu</creatorcontrib><creatorcontrib>Kwon, Dongseok</creatorcontrib><creatorcontrib>Kim, Dae Hwan</creatorcontrib><creatorcontrib>Kim, Jae-Joon</creatorcontrib><creatorcontrib>Kwon, Daewoong</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><title>Effect of Carrier Transport Process on Tunneling Electroresistance in Ferroelectric Tunnel Junction</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description><![CDATA[We demonstrate the factors that determine the tunneling electroresistance (TER) of the ferroelectric tunnel junction (FTJ) by investigating the effects of temperature (<inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula>) and the number of cycles (<inline-formula> <tex-math notation="LaTeX">{N}{)} </tex-math></inline-formula> on remnant polarization (<inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}}{)} </tex-math></inline-formula> and carrier transport process. The fabricated FTJs have a metal/ferroelectric/insulator/semiconductor structure. The <inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}} </tex-math></inline-formula> is increased with increasing <inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> due to oxygen vacancy redistribution. However, the increased <inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}} </tex-math></inline-formula> in a higher <inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> does not improve the TER ratio. Using current-voltage characterization and low-frequency noise spectroscopy, we reveal that the carrier transport process at the interface between the ferroelectric and dielectric layers becomes more important than <inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}} </tex-math></inline-formula> in determining the TER ratio.]]></description><subject>Carrier transport</subject><subject>Carrier transport mechanism</subject><subject>Ferroelectric materials</subject><subject>ferroelectric tunnel junction (FTJ)</subject><subject>Ferroelectricity</subject><subject>Hafnium oxide</subject><subject>Iron</subject><subject>Junctions</subject><subject>LF noise</subject><subject>low-frequency noise (LFN)</subject><subject>Semiconductor device measurement</subject><subject>Silicon</subject><subject>Spectroscopy</subject><subject>Temperature effects</subject><subject>Transport processes</subject><subject>Tunnel junctions</subject><subject>Tunneling</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEQgIMoWKt3wUvA89a8dpM9St36oKCHeg6b7ERSalKT3YP_3miLcxmY-WaG-RC6pmRBKWnv1t3DghHGFpwxzgU5QTNa16oidcNP0YxIQStOSXOOLnLeEkKFkGKGbOcc2BFHh5d9Sh4S3qQ-5H1MI35L0ULOOAa8mUKAnQ8fuNsVPsUE2eexDxawD3gFKUX463h7hPHLFOzoY7hEZ67fZbg65jl6X3Wb5VO1fn18Xt6vK8u5GivJmlZSZwZhBSWCSGUoGDMYZlwzKDCloIwpj_SMEGusc04ZoezAnGga4HN0e9i7T_FrgjzqbZxSKCc1k7WSVEhJC0UOlE0x5wRO75P_7NO3pkT_qtRFpf5VqY8qy8jNYcQDwD_etnUJxn8AsR1xVA</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Koo, Ryun-Han</creator><creator>Shin, Wonjun</creator><creator>Min, Kyung Kyu</creator><creator>Kwon, Dongseok</creator><creator>Kim, Dae Hwan</creator><creator>Kim, Jae-Joon</creator><creator>Kwon, Daewoong</creator><creator>Lee, Jong-Ho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5175-8258</orcidid><orcidid>https://orcid.org/0000-0003-3559-9802</orcidid><orcidid>https://orcid.org/0000-0001-6514-5348</orcidid><orcidid>https://orcid.org/0000-0003-1159-3406</orcidid><orcidid>https://orcid.org/0000-0001-9122-2458</orcidid><orcidid>https://orcid.org/0000-0001-7676-8938</orcidid><orcidid>https://orcid.org/0000-0003-2567-4012</orcidid></search><sort><creationdate>202301</creationdate><title>Effect of Carrier Transport Process on Tunneling Electroresistance in Ferroelectric Tunnel Junction</title><author>Koo, Ryun-Han ; Shin, Wonjun ; Min, Kyung Kyu ; Kwon, Dongseok ; Kim, Dae Hwan ; Kim, Jae-Joon ; Kwon, Daewoong ; Lee, Jong-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-726971fbd4c4104078b1ebbdb2bf6d8eb78b8bb741a200cbcfff8b48cd2f466e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carrier transport</topic><topic>Carrier transport mechanism</topic><topic>Ferroelectric materials</topic><topic>ferroelectric tunnel junction (FTJ)</topic><topic>Ferroelectricity</topic><topic>Hafnium oxide</topic><topic>Iron</topic><topic>Junctions</topic><topic>LF noise</topic><topic>low-frequency noise (LFN)</topic><topic>Semiconductor device measurement</topic><topic>Silicon</topic><topic>Spectroscopy</topic><topic>Temperature effects</topic><topic>Transport processes</topic><topic>Tunnel junctions</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koo, Ryun-Han</creatorcontrib><creatorcontrib>Shin, Wonjun</creatorcontrib><creatorcontrib>Min, Kyung Kyu</creatorcontrib><creatorcontrib>Kwon, Dongseok</creatorcontrib><creatorcontrib>Kim, Dae Hwan</creatorcontrib><creatorcontrib>Kim, Jae-Joon</creatorcontrib><creatorcontrib>Kwon, Daewoong</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Koo, Ryun-Han</au><au>Shin, Wonjun</au><au>Min, Kyung Kyu</au><au>Kwon, Dongseok</au><au>Kim, Dae Hwan</au><au>Kim, Jae-Joon</au><au>Kwon, Daewoong</au><au>Lee, Jong-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Carrier Transport Process on Tunneling Electroresistance in Ferroelectric Tunnel Junction</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2023-01</date><risdate>2023</risdate><volume>44</volume><issue>1</issue><spage>164</spage><epage>167</epage><pages>164-167</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract><![CDATA[We demonstrate the factors that determine the tunneling electroresistance (TER) of the ferroelectric tunnel junction (FTJ) by investigating the effects of temperature (<inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula>) and the number of cycles (<inline-formula> <tex-math notation="LaTeX">{N}{)} </tex-math></inline-formula> on remnant polarization (<inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}}{)} </tex-math></inline-formula> and carrier transport process. The fabricated FTJs have a metal/ferroelectric/insulator/semiconductor structure. The <inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}} </tex-math></inline-formula> is increased with increasing <inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> due to oxygen vacancy redistribution. However, the increased <inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}} </tex-math></inline-formula> in a higher <inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> does not improve the TER ratio. Using current-voltage characterization and low-frequency noise spectroscopy, we reveal that the carrier transport process at the interface between the ferroelectric and dielectric layers becomes more important than <inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}} </tex-math></inline-formula> in determining the TER ratio.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2022.3223340</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-5175-8258</orcidid><orcidid>https://orcid.org/0000-0003-3559-9802</orcidid><orcidid>https://orcid.org/0000-0001-6514-5348</orcidid><orcidid>https://orcid.org/0000-0003-1159-3406</orcidid><orcidid>https://orcid.org/0000-0001-9122-2458</orcidid><orcidid>https://orcid.org/0000-0001-7676-8938</orcidid><orcidid>https://orcid.org/0000-0003-2567-4012</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2023-01, Vol.44 (1), p.164-167
issn 0741-3106
1558-0563
language eng
recordid cdi_ieee_primary_9955552
source IEEE Electronic Library (IEL)
subjects Carrier transport
Carrier transport mechanism
Ferroelectric materials
ferroelectric tunnel junction (FTJ)
Ferroelectricity
Hafnium oxide
Iron
Junctions
LF noise
low-frequency noise (LFN)
Semiconductor device measurement
Silicon
Spectroscopy
Temperature effects
Transport processes
Tunnel junctions
Tunneling
title Effect of Carrier Transport Process on Tunneling Electroresistance in Ferroelectric Tunnel Junction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A19%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Carrier%20Transport%20Process%20on%20Tunneling%20Electroresistance%20in%20Ferroelectric%20Tunnel%20Junction&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Koo,%20Ryun-Han&rft.date=2023-01&rft.volume=44&rft.issue=1&rft.spage=164&rft.epage=167&rft.pages=164-167&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2022.3223340&rft_dat=%3Cproquest_RIE%3E2758714771%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758714771&rft_id=info:pmid/&rft_ieee_id=9955552&rfr_iscdi=true