Effect of Carrier Transport Process on Tunneling Electroresistance in Ferroelectric Tunnel Junction
We demonstrate the factors that determine the tunneling electroresistance (TER) of the ferroelectric tunnel junction (FTJ) by investigating the effects of temperature ( {T} ) and the number of cycles ( {N}{)} on remnant polarization ( {P}_{\text {r}}{)} and carrier transport process. The fabricate...
Gespeichert in:
Veröffentlicht in: | IEEE electron device letters 2023-01, Vol.44 (1), p.164-167 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 167 |
---|---|
container_issue | 1 |
container_start_page | 164 |
container_title | IEEE electron device letters |
container_volume | 44 |
creator | Koo, Ryun-Han Shin, Wonjun Min, Kyung Kyu Kwon, Dongseok Kim, Dae Hwan Kim, Jae-Joon Kwon, Daewoong Lee, Jong-Ho |
description | We demonstrate the factors that determine the tunneling electroresistance (TER) of the ferroelectric tunnel junction (FTJ) by investigating the effects of temperature ( {T} ) and the number of cycles ( {N}{)} on remnant polarization ( {P}_{\text {r}}{)} and carrier transport process. The fabricated FTJs have a metal/ferroelectric/insulator/semiconductor structure. The {P}_{\text {r}} is increased with increasing {T} and {N} due to oxygen vacancy redistribution. However, the increased {P}_{\text {r}} in a higher {T} and {N} does not improve the TER ratio. Using current-voltage characterization and low-frequency noise spectroscopy, we reveal that the carrier transport process at the interface between the ferroelectric and dielectric layers becomes more important than {P}_{\text {r}} in determining the TER ratio. |
doi_str_mv | 10.1109/LED.2022.3223340 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9955552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9955552</ieee_id><sourcerecordid>2758714771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-726971fbd4c4104078b1ebbdb2bf6d8eb78b8bb741a200cbcfff8b48cd2f466e3</originalsourceid><addsrcrecordid>eNo9kEtLAzEQgIMoWKt3wUvA89a8dpM9St36oKCHeg6b7ERSalKT3YP_3miLcxmY-WaG-RC6pmRBKWnv1t3DghHGFpwxzgU5QTNa16oidcNP0YxIQStOSXOOLnLeEkKFkGKGbOcc2BFHh5d9Sh4S3qQ-5H1MI35L0ULOOAa8mUKAnQ8fuNsVPsUE2eexDxawD3gFKUX463h7hPHLFOzoY7hEZ67fZbg65jl6X3Wb5VO1fn18Xt6vK8u5GivJmlZSZwZhBSWCSGUoGDMYZlwzKDCloIwpj_SMEGusc04ZoezAnGga4HN0e9i7T_FrgjzqbZxSKCc1k7WSVEhJC0UOlE0x5wRO75P_7NO3pkT_qtRFpf5VqY8qy8jNYcQDwD_etnUJxn8AsR1xVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758714771</pqid></control><display><type>article</type><title>Effect of Carrier Transport Process on Tunneling Electroresistance in Ferroelectric Tunnel Junction</title><source>IEEE Electronic Library (IEL)</source><creator>Koo, Ryun-Han ; Shin, Wonjun ; Min, Kyung Kyu ; Kwon, Dongseok ; Kim, Dae Hwan ; Kim, Jae-Joon ; Kwon, Daewoong ; Lee, Jong-Ho</creator><creatorcontrib>Koo, Ryun-Han ; Shin, Wonjun ; Min, Kyung Kyu ; Kwon, Dongseok ; Kim, Dae Hwan ; Kim, Jae-Joon ; Kwon, Daewoong ; Lee, Jong-Ho</creatorcontrib><description><![CDATA[We demonstrate the factors that determine the tunneling electroresistance (TER) of the ferroelectric tunnel junction (FTJ) by investigating the effects of temperature (<inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula>) and the number of cycles (<inline-formula> <tex-math notation="LaTeX">{N}{)} </tex-math></inline-formula> on remnant polarization (<inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}}{)} </tex-math></inline-formula> and carrier transport process. The fabricated FTJs have a metal/ferroelectric/insulator/semiconductor structure. The <inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}} </tex-math></inline-formula> is increased with increasing <inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> due to oxygen vacancy redistribution. However, the increased <inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}} </tex-math></inline-formula> in a higher <inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> does not improve the TER ratio. Using current-voltage characterization and low-frequency noise spectroscopy, we reveal that the carrier transport process at the interface between the ferroelectric and dielectric layers becomes more important than <inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}} </tex-math></inline-formula> in determining the TER ratio.]]></description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2022.3223340</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Carrier transport ; Carrier transport mechanism ; Ferroelectric materials ; ferroelectric tunnel junction (FTJ) ; Ferroelectricity ; Hafnium oxide ; Iron ; Junctions ; LF noise ; low-frequency noise (LFN) ; Semiconductor device measurement ; Silicon ; Spectroscopy ; Temperature effects ; Transport processes ; Tunnel junctions ; Tunneling</subject><ispartof>IEEE electron device letters, 2023-01, Vol.44 (1), p.164-167</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-726971fbd4c4104078b1ebbdb2bf6d8eb78b8bb741a200cbcfff8b48cd2f466e3</citedby><cites>FETCH-LOGICAL-c338t-726971fbd4c4104078b1ebbdb2bf6d8eb78b8bb741a200cbcfff8b48cd2f466e3</cites><orcidid>0000-0001-5175-8258 ; 0000-0003-3559-9802 ; 0000-0001-6514-5348 ; 0000-0003-1159-3406 ; 0000-0001-9122-2458 ; 0000-0001-7676-8938 ; 0000-0003-2567-4012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9955552$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9955552$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Koo, Ryun-Han</creatorcontrib><creatorcontrib>Shin, Wonjun</creatorcontrib><creatorcontrib>Min, Kyung Kyu</creatorcontrib><creatorcontrib>Kwon, Dongseok</creatorcontrib><creatorcontrib>Kim, Dae Hwan</creatorcontrib><creatorcontrib>Kim, Jae-Joon</creatorcontrib><creatorcontrib>Kwon, Daewoong</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><title>Effect of Carrier Transport Process on Tunneling Electroresistance in Ferroelectric Tunnel Junction</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description><![CDATA[We demonstrate the factors that determine the tunneling electroresistance (TER) of the ferroelectric tunnel junction (FTJ) by investigating the effects of temperature (<inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula>) and the number of cycles (<inline-formula> <tex-math notation="LaTeX">{N}{)} </tex-math></inline-formula> on remnant polarization (<inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}}{)} </tex-math></inline-formula> and carrier transport process. The fabricated FTJs have a metal/ferroelectric/insulator/semiconductor structure. The <inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}} </tex-math></inline-formula> is increased with increasing <inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> due to oxygen vacancy redistribution. However, the increased <inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}} </tex-math></inline-formula> in a higher <inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> does not improve the TER ratio. Using current-voltage characterization and low-frequency noise spectroscopy, we reveal that the carrier transport process at the interface between the ferroelectric and dielectric layers becomes more important than <inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}} </tex-math></inline-formula> in determining the TER ratio.]]></description><subject>Carrier transport</subject><subject>Carrier transport mechanism</subject><subject>Ferroelectric materials</subject><subject>ferroelectric tunnel junction (FTJ)</subject><subject>Ferroelectricity</subject><subject>Hafnium oxide</subject><subject>Iron</subject><subject>Junctions</subject><subject>LF noise</subject><subject>low-frequency noise (LFN)</subject><subject>Semiconductor device measurement</subject><subject>Silicon</subject><subject>Spectroscopy</subject><subject>Temperature effects</subject><subject>Transport processes</subject><subject>Tunnel junctions</subject><subject>Tunneling</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEQgIMoWKt3wUvA89a8dpM9St36oKCHeg6b7ERSalKT3YP_3miLcxmY-WaG-RC6pmRBKWnv1t3DghHGFpwxzgU5QTNa16oidcNP0YxIQStOSXOOLnLeEkKFkGKGbOcc2BFHh5d9Sh4S3qQ-5H1MI35L0ULOOAa8mUKAnQ8fuNsVPsUE2eexDxawD3gFKUX463h7hPHLFOzoY7hEZ67fZbg65jl6X3Wb5VO1fn18Xt6vK8u5GivJmlZSZwZhBSWCSGUoGDMYZlwzKDCloIwpj_SMEGusc04ZoezAnGga4HN0e9i7T_FrgjzqbZxSKCc1k7WSVEhJC0UOlE0x5wRO75P_7NO3pkT_qtRFpf5VqY8qy8jNYcQDwD_etnUJxn8AsR1xVA</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Koo, Ryun-Han</creator><creator>Shin, Wonjun</creator><creator>Min, Kyung Kyu</creator><creator>Kwon, Dongseok</creator><creator>Kim, Dae Hwan</creator><creator>Kim, Jae-Joon</creator><creator>Kwon, Daewoong</creator><creator>Lee, Jong-Ho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5175-8258</orcidid><orcidid>https://orcid.org/0000-0003-3559-9802</orcidid><orcidid>https://orcid.org/0000-0001-6514-5348</orcidid><orcidid>https://orcid.org/0000-0003-1159-3406</orcidid><orcidid>https://orcid.org/0000-0001-9122-2458</orcidid><orcidid>https://orcid.org/0000-0001-7676-8938</orcidid><orcidid>https://orcid.org/0000-0003-2567-4012</orcidid></search><sort><creationdate>202301</creationdate><title>Effect of Carrier Transport Process on Tunneling Electroresistance in Ferroelectric Tunnel Junction</title><author>Koo, Ryun-Han ; Shin, Wonjun ; Min, Kyung Kyu ; Kwon, Dongseok ; Kim, Dae Hwan ; Kim, Jae-Joon ; Kwon, Daewoong ; Lee, Jong-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-726971fbd4c4104078b1ebbdb2bf6d8eb78b8bb741a200cbcfff8b48cd2f466e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carrier transport</topic><topic>Carrier transport mechanism</topic><topic>Ferroelectric materials</topic><topic>ferroelectric tunnel junction (FTJ)</topic><topic>Ferroelectricity</topic><topic>Hafnium oxide</topic><topic>Iron</topic><topic>Junctions</topic><topic>LF noise</topic><topic>low-frequency noise (LFN)</topic><topic>Semiconductor device measurement</topic><topic>Silicon</topic><topic>Spectroscopy</topic><topic>Temperature effects</topic><topic>Transport processes</topic><topic>Tunnel junctions</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koo, Ryun-Han</creatorcontrib><creatorcontrib>Shin, Wonjun</creatorcontrib><creatorcontrib>Min, Kyung Kyu</creatorcontrib><creatorcontrib>Kwon, Dongseok</creatorcontrib><creatorcontrib>Kim, Dae Hwan</creatorcontrib><creatorcontrib>Kim, Jae-Joon</creatorcontrib><creatorcontrib>Kwon, Daewoong</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Koo, Ryun-Han</au><au>Shin, Wonjun</au><au>Min, Kyung Kyu</au><au>Kwon, Dongseok</au><au>Kim, Dae Hwan</au><au>Kim, Jae-Joon</au><au>Kwon, Daewoong</au><au>Lee, Jong-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Carrier Transport Process on Tunneling Electroresistance in Ferroelectric Tunnel Junction</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2023-01</date><risdate>2023</risdate><volume>44</volume><issue>1</issue><spage>164</spage><epage>167</epage><pages>164-167</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract><![CDATA[We demonstrate the factors that determine the tunneling electroresistance (TER) of the ferroelectric tunnel junction (FTJ) by investigating the effects of temperature (<inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula>) and the number of cycles (<inline-formula> <tex-math notation="LaTeX">{N}{)} </tex-math></inline-formula> on remnant polarization (<inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}}{)} </tex-math></inline-formula> and carrier transport process. The fabricated FTJs have a metal/ferroelectric/insulator/semiconductor structure. The <inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}} </tex-math></inline-formula> is increased with increasing <inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> due to oxygen vacancy redistribution. However, the increased <inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}} </tex-math></inline-formula> in a higher <inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> does not improve the TER ratio. Using current-voltage characterization and low-frequency noise spectroscopy, we reveal that the carrier transport process at the interface between the ferroelectric and dielectric layers becomes more important than <inline-formula> <tex-math notation="LaTeX">{P}_{\text {r}} </tex-math></inline-formula> in determining the TER ratio.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2022.3223340</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-5175-8258</orcidid><orcidid>https://orcid.org/0000-0003-3559-9802</orcidid><orcidid>https://orcid.org/0000-0001-6514-5348</orcidid><orcidid>https://orcid.org/0000-0003-1159-3406</orcidid><orcidid>https://orcid.org/0000-0001-9122-2458</orcidid><orcidid>https://orcid.org/0000-0001-7676-8938</orcidid><orcidid>https://orcid.org/0000-0003-2567-4012</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2023-01, Vol.44 (1), p.164-167 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_ieee_primary_9955552 |
source | IEEE Electronic Library (IEL) |
subjects | Carrier transport Carrier transport mechanism Ferroelectric materials ferroelectric tunnel junction (FTJ) Ferroelectricity Hafnium oxide Iron Junctions LF noise low-frequency noise (LFN) Semiconductor device measurement Silicon Spectroscopy Temperature effects Transport processes Tunnel junctions Tunneling |
title | Effect of Carrier Transport Process on Tunneling Electroresistance in Ferroelectric Tunnel Junction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A19%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Carrier%20Transport%20Process%20on%20Tunneling%20Electroresistance%20in%20Ferroelectric%20Tunnel%20Junction&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Koo,%20Ryun-Han&rft.date=2023-01&rft.volume=44&rft.issue=1&rft.spage=164&rft.epage=167&rft.pages=164-167&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2022.3223340&rft_dat=%3Cproquest_RIE%3E2758714771%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758714771&rft_id=info:pmid/&rft_ieee_id=9955552&rfr_iscdi=true |