On Local Distributions in Graph Signal Processing
Graph filtering is the cornerstone operation in graph signal processing (GSP). Thus, understanding it is key in developing potent GSP methods. Graph filters are local and distributed linear operations, whose output depends only on the local neighborhood of each node. Moreover, a graph filter's...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2022, Vol.70, p.5564-5577 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5577 |
---|---|
container_issue | |
container_start_page | 5564 |
container_title | IEEE transactions on signal processing |
container_volume | 70 |
creator | Roddenberry, T. Mitchell Gama, Fernando Baraniuk, Richard G. Segarra, Santiago |
description | Graph filtering is the cornerstone operation in graph signal processing (GSP). Thus, understanding it is key in developing potent GSP methods. Graph filters are local and distributed linear operations, whose output depends only on the local neighborhood of each node. Moreover, a graph filter's output can be computed separately at each node by carrying out repeated exchanges with immediate neighbors. Graph filters can be compactly written as polynomials of a graph shift operator (typically, a sparse matrix description of the graph). This has led to relating the properties of the filters with the spectral properties of the corresponding matrix - which encodes global structure of the graph. In this work, we propose a framework that relies solely on the local distribution of the neighborhoods of a graph. The crux of this approach is to describe graphs and graph signals in terms of a measurable space of rooted balls. Leveraging this, we are able to seamlessly compare graphs of different sizes and coming from different models, yielding results on the convergence of spectral densities, transferability of filters across arbitrary graphs, and continuity of graph signal properties with respect to the distribution of local substructures. |
doi_str_mv | 10.1109/TSP.2022.3223217 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9954912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9954912</ieee_id><sourcerecordid>2747609398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-f644b3b7dd2e0817b186eeeff37d5f4f765882dd2accb249369bdf33c245bb183</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKd3wUvBc2uSlzbNUaZOobDBJngLTZrMjNnWpD343y9lw9N78P2-x_c-hO4JzgjB4mm7WWcUU5oBpUAJv0AzIhhJMePFZdxxDmle8q9rdBPCHmPCmChmiKzapOp0fUheXBi8U-PgujYkrk2Wvu6_k43btVFd-06bEFy7u0VXtj4Ec3eec_T59rpdvKfVavmxeK5SDQBDagvGFCjeNNTgknBFysIYYy3wJrfM8iIvSxrVWmtFmYBCqMYCaMpyFWGYo8fT3d53v6MJg9x3o49ZgqQ8PoUFiInCJ0r7LgRvrOy9-6n9nyRYTsXIWIycipHnYqLl4WRxMc8_LkTOBKFwBB8QXdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747609398</pqid></control><display><type>article</type><title>On Local Distributions in Graph Signal Processing</title><source>IEEE Electronic Library (IEL)</source><creator>Roddenberry, T. Mitchell ; Gama, Fernando ; Baraniuk, Richard G. ; Segarra, Santiago</creator><creatorcontrib>Roddenberry, T. Mitchell ; Gama, Fernando ; Baraniuk, Richard G. ; Segarra, Santiago</creatorcontrib><description>Graph filtering is the cornerstone operation in graph signal processing (GSP). Thus, understanding it is key in developing potent GSP methods. Graph filters are local and distributed linear operations, whose output depends only on the local neighborhood of each node. Moreover, a graph filter's output can be computed separately at each node by carrying out repeated exchanges with immediate neighbors. Graph filters can be compactly written as polynomials of a graph shift operator (typically, a sparse matrix description of the graph). This has led to relating the properties of the filters with the spectral properties of the corresponding matrix - which encodes global structure of the graph. In this work, we propose a framework that relies solely on the local distribution of the neighborhoods of a graph. The crux of this approach is to describe graphs and graph signals in terms of a measurable space of rooted balls. Leveraging this, we are able to seamlessly compare graphs of different sizes and coming from different models, yielding results on the convergence of spectral densities, transferability of filters across arbitrary graphs, and continuity of graph signal properties with respect to the distribution of local substructures.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2022.3223217</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Convergence ; Filtering theory ; graph filtering ; graph Fourier transform ; Graph neural networks ; Graph signal processing ; graphing signal processing ; Graphs ; Information filters ; Nonlinear filters ; Operators (mathematics) ; Polynomials ; Signal processing ; Sparse matrices ; transferability ; weak convergence</subject><ispartof>IEEE transactions on signal processing, 2022, Vol.70, p.5564-5577</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-f644b3b7dd2e0817b186eeeff37d5f4f765882dd2accb249369bdf33c245bb183</citedby><cites>FETCH-LOGICAL-c333t-f644b3b7dd2e0817b186eeeff37d5f4f765882dd2accb249369bdf33c245bb183</cites><orcidid>0000-0002-0721-8999 ; 0000-0001-9031-6305 ; 0000-0002-8408-9633 ; 0000-0001-6117-8193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9954912$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9954912$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roddenberry, T. Mitchell</creatorcontrib><creatorcontrib>Gama, Fernando</creatorcontrib><creatorcontrib>Baraniuk, Richard G.</creatorcontrib><creatorcontrib>Segarra, Santiago</creatorcontrib><title>On Local Distributions in Graph Signal Processing</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Graph filtering is the cornerstone operation in graph signal processing (GSP). Thus, understanding it is key in developing potent GSP methods. Graph filters are local and distributed linear operations, whose output depends only on the local neighborhood of each node. Moreover, a graph filter's output can be computed separately at each node by carrying out repeated exchanges with immediate neighbors. Graph filters can be compactly written as polynomials of a graph shift operator (typically, a sparse matrix description of the graph). This has led to relating the properties of the filters with the spectral properties of the corresponding matrix - which encodes global structure of the graph. In this work, we propose a framework that relies solely on the local distribution of the neighborhoods of a graph. The crux of this approach is to describe graphs and graph signals in terms of a measurable space of rooted balls. Leveraging this, we are able to seamlessly compare graphs of different sizes and coming from different models, yielding results on the convergence of spectral densities, transferability of filters across arbitrary graphs, and continuity of graph signal properties with respect to the distribution of local substructures.</description><subject>Convergence</subject><subject>Filtering theory</subject><subject>graph filtering</subject><subject>graph Fourier transform</subject><subject>Graph neural networks</subject><subject>Graph signal processing</subject><subject>graphing signal processing</subject><subject>Graphs</subject><subject>Information filters</subject><subject>Nonlinear filters</subject><subject>Operators (mathematics)</subject><subject>Polynomials</subject><subject>Signal processing</subject><subject>Sparse matrices</subject><subject>transferability</subject><subject>weak convergence</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUxoMoOKd3wUvBc2uSlzbNUaZOobDBJngLTZrMjNnWpD343y9lw9N78P2-x_c-hO4JzgjB4mm7WWcUU5oBpUAJv0AzIhhJMePFZdxxDmle8q9rdBPCHmPCmChmiKzapOp0fUheXBi8U-PgujYkrk2Wvu6_k43btVFd-06bEFy7u0VXtj4Ec3eec_T59rpdvKfVavmxeK5SDQBDagvGFCjeNNTgknBFysIYYy3wJrfM8iIvSxrVWmtFmYBCqMYCaMpyFWGYo8fT3d53v6MJg9x3o49ZgqQ8PoUFiInCJ0r7LgRvrOy9-6n9nyRYTsXIWIycipHnYqLl4WRxMc8_LkTOBKFwBB8QXdw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Roddenberry, T. Mitchell</creator><creator>Gama, Fernando</creator><creator>Baraniuk, Richard G.</creator><creator>Segarra, Santiago</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0721-8999</orcidid><orcidid>https://orcid.org/0000-0001-9031-6305</orcidid><orcidid>https://orcid.org/0000-0002-8408-9633</orcidid><orcidid>https://orcid.org/0000-0001-6117-8193</orcidid></search><sort><creationdate>2022</creationdate><title>On Local Distributions in Graph Signal Processing</title><author>Roddenberry, T. Mitchell ; Gama, Fernando ; Baraniuk, Richard G. ; Segarra, Santiago</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-f644b3b7dd2e0817b186eeeff37d5f4f765882dd2accb249369bdf33c245bb183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convergence</topic><topic>Filtering theory</topic><topic>graph filtering</topic><topic>graph Fourier transform</topic><topic>Graph neural networks</topic><topic>Graph signal processing</topic><topic>graphing signal processing</topic><topic>Graphs</topic><topic>Information filters</topic><topic>Nonlinear filters</topic><topic>Operators (mathematics)</topic><topic>Polynomials</topic><topic>Signal processing</topic><topic>Sparse matrices</topic><topic>transferability</topic><topic>weak convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roddenberry, T. Mitchell</creatorcontrib><creatorcontrib>Gama, Fernando</creatorcontrib><creatorcontrib>Baraniuk, Richard G.</creatorcontrib><creatorcontrib>Segarra, Santiago</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roddenberry, T. Mitchell</au><au>Gama, Fernando</au><au>Baraniuk, Richard G.</au><au>Segarra, Santiago</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Local Distributions in Graph Signal Processing</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2022</date><risdate>2022</risdate><volume>70</volume><spage>5564</spage><epage>5577</epage><pages>5564-5577</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Graph filtering is the cornerstone operation in graph signal processing (GSP). Thus, understanding it is key in developing potent GSP methods. Graph filters are local and distributed linear operations, whose output depends only on the local neighborhood of each node. Moreover, a graph filter's output can be computed separately at each node by carrying out repeated exchanges with immediate neighbors. Graph filters can be compactly written as polynomials of a graph shift operator (typically, a sparse matrix description of the graph). This has led to relating the properties of the filters with the spectral properties of the corresponding matrix - which encodes global structure of the graph. In this work, we propose a framework that relies solely on the local distribution of the neighborhoods of a graph. The crux of this approach is to describe graphs and graph signals in terms of a measurable space of rooted balls. Leveraging this, we are able to seamlessly compare graphs of different sizes and coming from different models, yielding results on the convergence of spectral densities, transferability of filters across arbitrary graphs, and continuity of graph signal properties with respect to the distribution of local substructures.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2022.3223217</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0721-8999</orcidid><orcidid>https://orcid.org/0000-0001-9031-6305</orcidid><orcidid>https://orcid.org/0000-0002-8408-9633</orcidid><orcidid>https://orcid.org/0000-0001-6117-8193</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2022, Vol.70, p.5564-5577 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_9954912 |
source | IEEE Electronic Library (IEL) |
subjects | Convergence Filtering theory graph filtering graph Fourier transform Graph neural networks Graph signal processing graphing signal processing Graphs Information filters Nonlinear filters Operators (mathematics) Polynomials Signal processing Sparse matrices transferability weak convergence |
title | On Local Distributions in Graph Signal Processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Local%20Distributions%20in%20Graph%20Signal%20Processing&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Roddenberry,%20T.%20Mitchell&rft.date=2022&rft.volume=70&rft.spage=5564&rft.epage=5577&rft.pages=5564-5577&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2022.3223217&rft_dat=%3Cproquest_RIE%3E2747609398%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747609398&rft_id=info:pmid/&rft_ieee_id=9954912&rfr_iscdi=true |