Microgrid Differential Protection Based On Superimposed Current Angle Employing Synchrophasors
The inclusion of multi-energy distributed generators (DGs), especially inverter-interfaced generators, presents challenges in the microgrid's protection strategy and operational constraints. The work for designing primary protection mechanism for microgrid is continuously progressing. In this r...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2023-08, Vol.19 (8), p.1-9 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | IEEE transactions on industrial informatics |
container_volume | 19 |
creator | Dua, Gagandeep Singh Tyagi, Barjeev Kumar, Vishal |
description | The inclusion of multi-energy distributed generators (DGs), especially inverter-interfaced generators, presents challenges in the microgrid's protection strategy and operational constraints. The work for designing primary protection mechanism for microgrid is continuously progressing. In this regard, this article presents a positive sequence superimposed current differential angle (SCDA) based protection scheme employing only positive sequence current phasor from both ends of the line. The proposed scheme collects current phasor measurements from the low-cost micro-phasor measurement units (\muPMUs). The performance of the proposed scheme is analyzed through simulations on a 7-node microgrid in grid-connected and isolated mode operation under various fault and no-fault situations, and also considering the effect of DG penetration level and DGs types. The simulations are also carried out in the IEEE-33 node network considering C37.118.1 standards-compliant PMUs. Furthermore, a real-time control hardware-in-loop (RTC-HIL) testing is performed to further validate the scheme for practical implementation. |
doi_str_mv | 10.1109/TII.2022.3222319 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9950698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9950698</ieee_id><sourcerecordid>2837145457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-dd031b53b8b168c1fa7e77aa055457a4901858384780d932d1a19b3975cf60e53</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKd3wUvAc-dL0izJcc6pg8mEzashbdMto2tq0h7239sy8fTeg-_7Ht8PoXsCE0JAPW2XywkFSieMUsqIukAjolKSAHC47HfOScIosGt0E-MBgAlgaoS-P1we_C64Ar-4srTB1q0zFf4MvrV563yNn020BV7XeNM1Nrhj44d73oVBi2f1rrJ4cWwqf3L1Dm9Odb4Pvtmb6EO8RVelqaK9-5tj9PW62M7fk9X6bTmfrZKcMdkmRQGMZJxlMiNTmZPSCCuEMcB5yoVJFRDJJZOpkFAoRgtiiMqYEjwvp2A5G6PHc24T_E9nY6sPvgt1_1JTyQRJh5xeBWdVXznGYEvd9H1MOGkCeqCoe4p6oKj_KPaWh7PFWWv_5UpxmCrJfgFEGm24</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837145457</pqid></control><display><type>article</type><title>Microgrid Differential Protection Based On Superimposed Current Angle Employing Synchrophasors</title><source>IEEE Electronic Library (IEL)</source><creator>Dua, Gagandeep Singh ; Tyagi, Barjeev ; Kumar, Vishal</creator><creatorcontrib>Dua, Gagandeep Singh ; Tyagi, Barjeev ; Kumar, Vishal</creatorcontrib><description>The inclusion of multi-energy distributed generators (DGs), especially inverter-interfaced generators, presents challenges in the microgrid's protection strategy and operational constraints. The work for designing primary protection mechanism for microgrid is continuously progressing. In this regard, this article presents a positive sequence superimposed current differential angle (SCDA) based protection scheme employing only positive sequence current phasor from both ends of the line. The proposed scheme collects current phasor measurements from the low-cost micro-phasor measurement units (<inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>PMUs). The performance of the proposed scheme is analyzed through simulations on a 7-node microgrid in grid-connected and isolated mode operation under various fault and no-fault situations, and also considering the effect of DG penetration level and DGs types. The simulations are also carried out in the IEEE-33 node network considering C37.118.1 standards-compliant PMUs. Furthermore, a real-time control hardware-in-loop (RTC-HIL) testing is performed to further validate the scheme for practical implementation.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2022.3222319</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Circuit faults ; Distributed generation ; Distributed generator (DG) ; Fault currents ; fault detection ; Generators ; hardware-in-loop ; Hardware-in-the-loop simulation ; Impedance ; micro-phasor measurement unit (<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> mu</tex-math> </inline-formula>PMU) ; microgrid ; Microgrids ; Noise measurement ; Phasor measurement units ; Phasors ; Resistance ; superimposed components ; Units of measurement</subject><ispartof>IEEE transactions on industrial informatics, 2023-08, Vol.19 (8), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-dd031b53b8b168c1fa7e77aa055457a4901858384780d932d1a19b3975cf60e53</citedby><cites>FETCH-LOGICAL-c338t-dd031b53b8b168c1fa7e77aa055457a4901858384780d932d1a19b3975cf60e53</cites><orcidid>0000-0001-6277-3066 ; 0000-0003-1816-3249 ; 0000-0002-5055-1447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9950698$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9950698$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dua, Gagandeep Singh</creatorcontrib><creatorcontrib>Tyagi, Barjeev</creatorcontrib><creatorcontrib>Kumar, Vishal</creatorcontrib><title>Microgrid Differential Protection Based On Superimposed Current Angle Employing Synchrophasors</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>The inclusion of multi-energy distributed generators (DGs), especially inverter-interfaced generators, presents challenges in the microgrid's protection strategy and operational constraints. The work for designing primary protection mechanism for microgrid is continuously progressing. In this regard, this article presents a positive sequence superimposed current differential angle (SCDA) based protection scheme employing only positive sequence current phasor from both ends of the line. The proposed scheme collects current phasor measurements from the low-cost micro-phasor measurement units (<inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>PMUs). The performance of the proposed scheme is analyzed through simulations on a 7-node microgrid in grid-connected and isolated mode operation under various fault and no-fault situations, and also considering the effect of DG penetration level and DGs types. The simulations are also carried out in the IEEE-33 node network considering C37.118.1 standards-compliant PMUs. Furthermore, a real-time control hardware-in-loop (RTC-HIL) testing is performed to further validate the scheme for practical implementation.</description><subject>Circuit faults</subject><subject>Distributed generation</subject><subject>Distributed generator (DG)</subject><subject>Fault currents</subject><subject>fault detection</subject><subject>Generators</subject><subject>hardware-in-loop</subject><subject>Hardware-in-the-loop simulation</subject><subject>Impedance</subject><subject>micro-phasor measurement unit (<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> mu</tex-math> </inline-formula>PMU)</subject><subject>microgrid</subject><subject>Microgrids</subject><subject>Noise measurement</subject><subject>Phasor measurement units</subject><subject>Phasors</subject><subject>Resistance</subject><subject>superimposed components</subject><subject>Units of measurement</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUxoMoOKd3wUvAc-dL0izJcc6pg8mEzashbdMto2tq0h7239sy8fTeg-_7Ht8PoXsCE0JAPW2XywkFSieMUsqIukAjolKSAHC47HfOScIosGt0E-MBgAlgaoS-P1we_C64Ar-4srTB1q0zFf4MvrV563yNn020BV7XeNM1Nrhj44d73oVBi2f1rrJ4cWwqf3L1Dm9Odb4Pvtmb6EO8RVelqaK9-5tj9PW62M7fk9X6bTmfrZKcMdkmRQGMZJxlMiNTmZPSCCuEMcB5yoVJFRDJJZOpkFAoRgtiiMqYEjwvp2A5G6PHc24T_E9nY6sPvgt1_1JTyQRJh5xeBWdVXznGYEvd9H1MOGkCeqCoe4p6oKj_KPaWh7PFWWv_5UpxmCrJfgFEGm24</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Dua, Gagandeep Singh</creator><creator>Tyagi, Barjeev</creator><creator>Kumar, Vishal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6277-3066</orcidid><orcidid>https://orcid.org/0000-0003-1816-3249</orcidid><orcidid>https://orcid.org/0000-0002-5055-1447</orcidid></search><sort><creationdate>20230801</creationdate><title>Microgrid Differential Protection Based On Superimposed Current Angle Employing Synchrophasors</title><author>Dua, Gagandeep Singh ; Tyagi, Barjeev ; Kumar, Vishal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-dd031b53b8b168c1fa7e77aa055457a4901858384780d932d1a19b3975cf60e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Circuit faults</topic><topic>Distributed generation</topic><topic>Distributed generator (DG)</topic><topic>Fault currents</topic><topic>fault detection</topic><topic>Generators</topic><topic>hardware-in-loop</topic><topic>Hardware-in-the-loop simulation</topic><topic>Impedance</topic><topic>micro-phasor measurement unit (<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> mu</tex-math> </inline-formula>PMU)</topic><topic>microgrid</topic><topic>Microgrids</topic><topic>Noise measurement</topic><topic>Phasor measurement units</topic><topic>Phasors</topic><topic>Resistance</topic><topic>superimposed components</topic><topic>Units of measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Dua, Gagandeep Singh</creatorcontrib><creatorcontrib>Tyagi, Barjeev</creatorcontrib><creatorcontrib>Kumar, Vishal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dua, Gagandeep Singh</au><au>Tyagi, Barjeev</au><au>Kumar, Vishal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microgrid Differential Protection Based On Superimposed Current Angle Employing Synchrophasors</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>19</volume><issue>8</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The inclusion of multi-energy distributed generators (DGs), especially inverter-interfaced generators, presents challenges in the microgrid's protection strategy and operational constraints. The work for designing primary protection mechanism for microgrid is continuously progressing. In this regard, this article presents a positive sequence superimposed current differential angle (SCDA) based protection scheme employing only positive sequence current phasor from both ends of the line. The proposed scheme collects current phasor measurements from the low-cost micro-phasor measurement units (<inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>PMUs). The performance of the proposed scheme is analyzed through simulations on a 7-node microgrid in grid-connected and isolated mode operation under various fault and no-fault situations, and also considering the effect of DG penetration level and DGs types. The simulations are also carried out in the IEEE-33 node network considering C37.118.1 standards-compliant PMUs. Furthermore, a real-time control hardware-in-loop (RTC-HIL) testing is performed to further validate the scheme for practical implementation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2022.3222319</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6277-3066</orcidid><orcidid>https://orcid.org/0000-0003-1816-3249</orcidid><orcidid>https://orcid.org/0000-0002-5055-1447</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2023-08, Vol.19 (8), p.1-9 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_ieee_primary_9950698 |
source | IEEE Electronic Library (IEL) |
subjects | Circuit faults Distributed generation Distributed generator (DG) Fault currents fault detection Generators hardware-in-loop Hardware-in-the-loop simulation Impedance micro-phasor measurement unit (<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> mu</tex-math> </inline-formula>PMU) microgrid Microgrids Noise measurement Phasor measurement units Phasors Resistance superimposed components Units of measurement |
title | Microgrid Differential Protection Based On Superimposed Current Angle Employing Synchrophasors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microgrid%20Differential%20Protection%20Based%20On%20Superimposed%20Current%20Angle%20Employing%20Synchrophasors&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Dua,%20Gagandeep%20Singh&rft.date=2023-08-01&rft.volume=19&rft.issue=8&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2022.3222319&rft_dat=%3Cproquest_RIE%3E2837145457%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2837145457&rft_id=info:pmid/&rft_ieee_id=9950698&rfr_iscdi=true |