Microgrid Differential Protection Based On Superimposed Current Angle Employing Synchrophasors

The inclusion of multi-energy distributed generators (DGs), especially inverter-interfaced generators, presents challenges in the microgrid's protection strategy and operational constraints. The work for designing primary protection mechanism for microgrid is continuously progressing. In this r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2023-08, Vol.19 (8), p.1-9
Hauptverfasser: Dua, Gagandeep Singh, Tyagi, Barjeev, Kumar, Vishal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 8
container_start_page 1
container_title IEEE transactions on industrial informatics
container_volume 19
creator Dua, Gagandeep Singh
Tyagi, Barjeev
Kumar, Vishal
description The inclusion of multi-energy distributed generators (DGs), especially inverter-interfaced generators, presents challenges in the microgrid's protection strategy and operational constraints. The work for designing primary protection mechanism for microgrid is continuously progressing. In this regard, this article presents a positive sequence superimposed current differential angle (SCDA) based protection scheme employing only positive sequence current phasor from both ends of the line. The proposed scheme collects current phasor measurements from the low-cost micro-phasor measurement units (\muPMUs). The performance of the proposed scheme is analyzed through simulations on a 7-node microgrid in grid-connected and isolated mode operation under various fault and no-fault situations, and also considering the effect of DG penetration level and DGs types. The simulations are also carried out in the IEEE-33 node network considering C37.118.1 standards-compliant PMUs. Furthermore, a real-time control hardware-in-loop (RTC-HIL) testing is performed to further validate the scheme for practical implementation.
doi_str_mv 10.1109/TII.2022.3222319
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9950698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9950698</ieee_id><sourcerecordid>2837145457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-dd031b53b8b168c1fa7e77aa055457a4901858384780d932d1a19b3975cf60e53</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKd3wUvAc-dL0izJcc6pg8mEzashbdMto2tq0h7239sy8fTeg-_7Ht8PoXsCE0JAPW2XywkFSieMUsqIukAjolKSAHC47HfOScIosGt0E-MBgAlgaoS-P1we_C64Ar-4srTB1q0zFf4MvrV563yNn020BV7XeNM1Nrhj44d73oVBi2f1rrJ4cWwqf3L1Dm9Odb4Pvtmb6EO8RVelqaK9-5tj9PW62M7fk9X6bTmfrZKcMdkmRQGMZJxlMiNTmZPSCCuEMcB5yoVJFRDJJZOpkFAoRgtiiMqYEjwvp2A5G6PHc24T_E9nY6sPvgt1_1JTyQRJh5xeBWdVXznGYEvd9H1MOGkCeqCoe4p6oKj_KPaWh7PFWWv_5UpxmCrJfgFEGm24</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837145457</pqid></control><display><type>article</type><title>Microgrid Differential Protection Based On Superimposed Current Angle Employing Synchrophasors</title><source>IEEE Electronic Library (IEL)</source><creator>Dua, Gagandeep Singh ; Tyagi, Barjeev ; Kumar, Vishal</creator><creatorcontrib>Dua, Gagandeep Singh ; Tyagi, Barjeev ; Kumar, Vishal</creatorcontrib><description>The inclusion of multi-energy distributed generators (DGs), especially inverter-interfaced generators, presents challenges in the microgrid's protection strategy and operational constraints. The work for designing primary protection mechanism for microgrid is continuously progressing. In this regard, this article presents a positive sequence superimposed current differential angle (SCDA) based protection scheme employing only positive sequence current phasor from both ends of the line. The proposed scheme collects current phasor measurements from the low-cost micro-phasor measurement units (&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\mu&lt;/tex-math&gt;&lt;/inline-formula&gt;PMUs). The performance of the proposed scheme is analyzed through simulations on a 7-node microgrid in grid-connected and isolated mode operation under various fault and no-fault situations, and also considering the effect of DG penetration level and DGs types. The simulations are also carried out in the IEEE-33 node network considering C37.118.1 standards-compliant PMUs. Furthermore, a real-time control hardware-in-loop (RTC-HIL) testing is performed to further validate the scheme for practical implementation.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2022.3222319</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Circuit faults ; Distributed generation ; Distributed generator (DG) ; Fault currents ; fault detection ; Generators ; hardware-in-loop ; Hardware-in-the-loop simulation ; Impedance ; micro-phasor measurement unit (&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; mu&lt;/tex-math&gt; &lt;/inline-formula&gt;PMU) ; microgrid ; Microgrids ; Noise measurement ; Phasor measurement units ; Phasors ; Resistance ; superimposed components ; Units of measurement</subject><ispartof>IEEE transactions on industrial informatics, 2023-08, Vol.19 (8), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-dd031b53b8b168c1fa7e77aa055457a4901858384780d932d1a19b3975cf60e53</citedby><cites>FETCH-LOGICAL-c338t-dd031b53b8b168c1fa7e77aa055457a4901858384780d932d1a19b3975cf60e53</cites><orcidid>0000-0001-6277-3066 ; 0000-0003-1816-3249 ; 0000-0002-5055-1447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9950698$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9950698$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dua, Gagandeep Singh</creatorcontrib><creatorcontrib>Tyagi, Barjeev</creatorcontrib><creatorcontrib>Kumar, Vishal</creatorcontrib><title>Microgrid Differential Protection Based On Superimposed Current Angle Employing Synchrophasors</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>The inclusion of multi-energy distributed generators (DGs), especially inverter-interfaced generators, presents challenges in the microgrid's protection strategy and operational constraints. The work for designing primary protection mechanism for microgrid is continuously progressing. In this regard, this article presents a positive sequence superimposed current differential angle (SCDA) based protection scheme employing only positive sequence current phasor from both ends of the line. The proposed scheme collects current phasor measurements from the low-cost micro-phasor measurement units (&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\mu&lt;/tex-math&gt;&lt;/inline-formula&gt;PMUs). The performance of the proposed scheme is analyzed through simulations on a 7-node microgrid in grid-connected and isolated mode operation under various fault and no-fault situations, and also considering the effect of DG penetration level and DGs types. The simulations are also carried out in the IEEE-33 node network considering C37.118.1 standards-compliant PMUs. Furthermore, a real-time control hardware-in-loop (RTC-HIL) testing is performed to further validate the scheme for practical implementation.</description><subject>Circuit faults</subject><subject>Distributed generation</subject><subject>Distributed generator (DG)</subject><subject>Fault currents</subject><subject>fault detection</subject><subject>Generators</subject><subject>hardware-in-loop</subject><subject>Hardware-in-the-loop simulation</subject><subject>Impedance</subject><subject>micro-phasor measurement unit (&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; mu&lt;/tex-math&gt; &lt;/inline-formula&gt;PMU)</subject><subject>microgrid</subject><subject>Microgrids</subject><subject>Noise measurement</subject><subject>Phasor measurement units</subject><subject>Phasors</subject><subject>Resistance</subject><subject>superimposed components</subject><subject>Units of measurement</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUxoMoOKd3wUvAc-dL0izJcc6pg8mEzashbdMto2tq0h7239sy8fTeg-_7Ht8PoXsCE0JAPW2XywkFSieMUsqIukAjolKSAHC47HfOScIosGt0E-MBgAlgaoS-P1we_C64Ar-4srTB1q0zFf4MvrV563yNn020BV7XeNM1Nrhj44d73oVBi2f1rrJ4cWwqf3L1Dm9Odb4Pvtmb6EO8RVelqaK9-5tj9PW62M7fk9X6bTmfrZKcMdkmRQGMZJxlMiNTmZPSCCuEMcB5yoVJFRDJJZOpkFAoRgtiiMqYEjwvp2A5G6PHc24T_E9nY6sPvgt1_1JTyQRJh5xeBWdVXznGYEvd9H1MOGkCeqCoe4p6oKj_KPaWh7PFWWv_5UpxmCrJfgFEGm24</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Dua, Gagandeep Singh</creator><creator>Tyagi, Barjeev</creator><creator>Kumar, Vishal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6277-3066</orcidid><orcidid>https://orcid.org/0000-0003-1816-3249</orcidid><orcidid>https://orcid.org/0000-0002-5055-1447</orcidid></search><sort><creationdate>20230801</creationdate><title>Microgrid Differential Protection Based On Superimposed Current Angle Employing Synchrophasors</title><author>Dua, Gagandeep Singh ; Tyagi, Barjeev ; Kumar, Vishal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-dd031b53b8b168c1fa7e77aa055457a4901858384780d932d1a19b3975cf60e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Circuit faults</topic><topic>Distributed generation</topic><topic>Distributed generator (DG)</topic><topic>Fault currents</topic><topic>fault detection</topic><topic>Generators</topic><topic>hardware-in-loop</topic><topic>Hardware-in-the-loop simulation</topic><topic>Impedance</topic><topic>micro-phasor measurement unit (&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; mu&lt;/tex-math&gt; &lt;/inline-formula&gt;PMU)</topic><topic>microgrid</topic><topic>Microgrids</topic><topic>Noise measurement</topic><topic>Phasor measurement units</topic><topic>Phasors</topic><topic>Resistance</topic><topic>superimposed components</topic><topic>Units of measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Dua, Gagandeep Singh</creatorcontrib><creatorcontrib>Tyagi, Barjeev</creatorcontrib><creatorcontrib>Kumar, Vishal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dua, Gagandeep Singh</au><au>Tyagi, Barjeev</au><au>Kumar, Vishal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microgrid Differential Protection Based On Superimposed Current Angle Employing Synchrophasors</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>19</volume><issue>8</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The inclusion of multi-energy distributed generators (DGs), especially inverter-interfaced generators, presents challenges in the microgrid's protection strategy and operational constraints. The work for designing primary protection mechanism for microgrid is continuously progressing. In this regard, this article presents a positive sequence superimposed current differential angle (SCDA) based protection scheme employing only positive sequence current phasor from both ends of the line. The proposed scheme collects current phasor measurements from the low-cost micro-phasor measurement units (&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\mu&lt;/tex-math&gt;&lt;/inline-formula&gt;PMUs). The performance of the proposed scheme is analyzed through simulations on a 7-node microgrid in grid-connected and isolated mode operation under various fault and no-fault situations, and also considering the effect of DG penetration level and DGs types. The simulations are also carried out in the IEEE-33 node network considering C37.118.1 standards-compliant PMUs. Furthermore, a real-time control hardware-in-loop (RTC-HIL) testing is performed to further validate the scheme for practical implementation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2022.3222319</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6277-3066</orcidid><orcidid>https://orcid.org/0000-0003-1816-3249</orcidid><orcidid>https://orcid.org/0000-0002-5055-1447</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2023-08, Vol.19 (8), p.1-9
issn 1551-3203
1941-0050
language eng
recordid cdi_ieee_primary_9950698
source IEEE Electronic Library (IEL)
subjects Circuit faults
Distributed generation
Distributed generator (DG)
Fault currents
fault detection
Generators
hardware-in-loop
Hardware-in-the-loop simulation
Impedance
micro-phasor measurement unit (<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> mu</tex-math> </inline-formula>PMU)
microgrid
Microgrids
Noise measurement
Phasor measurement units
Phasors
Resistance
superimposed components
Units of measurement
title Microgrid Differential Protection Based On Superimposed Current Angle Employing Synchrophasors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microgrid%20Differential%20Protection%20Based%20On%20Superimposed%20Current%20Angle%20Employing%20Synchrophasors&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Dua,%20Gagandeep%20Singh&rft.date=2023-08-01&rft.volume=19&rft.issue=8&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2022.3222319&rft_dat=%3Cproquest_RIE%3E2837145457%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2837145457&rft_id=info:pmid/&rft_ieee_id=9950698&rfr_iscdi=true