A Thermoelectric Energy-Harvesting Interface With Dual-Conversion Reconfigurable DC-DC Converter and Instantaneous Linear Extrapolation MPPT Method

This article presents a thermoelectric (TE) energy-harvesting interface with a reconfigurable dc-dc converter and a time-based instantaneous linear extrapolation (ILE) maximum power point tracking (MPPT) method. The proposed reconfigurable dc-dc converter comprises five switches for buck-boost opera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2023-06, Vol.58 (6), p.1-13
Hauptverfasser: Park, Inho, Jeon, Jinwoo, Kim, Hyunjin, Park, Taehyeong, Jeong, Junwon, Kim, Chulwoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 6
container_start_page 1
container_title IEEE journal of solid-state circuits
container_volume 58
creator Park, Inho
Jeon, Jinwoo
Kim, Hyunjin
Park, Taehyeong
Jeong, Junwon
Kim, Chulwoo
description This article presents a thermoelectric (TE) energy-harvesting interface with a reconfigurable dc-dc converter and a time-based instantaneous linear extrapolation (ILE) maximum power point tracking (MPPT) method. The proposed reconfigurable dc-dc converter comprises five switches for buck-boost operation and an additional switch for a dual-conversion mode in which battery power and TE generator (TEG) power are extracted in one cycle; therefore, the improved power density is achieved. The proposed ILE MPPT algorithm does not require TEG disconnection from the dc-dc converter, ensuring continuous TE energy extraction. The proposed MPPT method modulates the open-circuit voltage of TEG by performing linear extrapolation with a fully integrated circuit based on the steady-state voltage ripple information. The proposed interface is fabricated using a 180-nm CMOS process. The peak end-to-end efficiency of 90.48% is achieved with 0.2-V input voltage. The MPPT errors are measured up to 2.0% for the input capacitance variation and up to 1.067% for the equivalent resistance of TEG variation.
doi_str_mv 10.1109/JSSC.2022.3214839
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9946013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9946013</ieee_id><sourcerecordid>2819497356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-4f0c3ea5d5b7a17a174f598f4a27b43daaf9bb5f3aa74f45c9e8b8b7b8d460343</originalsourceid><addsrcrecordid>eNo9UN1K5DAUDssKO-v6AMveBLzumDSpTS6lM_4xsqIju3fltD2ZqdRkTFLR5_CFTRkRDhwO3x_nI-Q3Z3POmT65vr-v5jnL87nIuVRCfyMzXhQq46X4_53MGOMq0zljP8jPEB7TKaXiM_J-Rtdb9E8OB2yj71u6tOg3b9kl-BcMsbcbemUjegMt0n993NLFCENWOfuCPvTO0jtsnTX9ZvTQDEgXVbao6B5POgq2Sw4hgk2Dbgx01VsET5ev0cPODRAnl5vb2zW9wbh13S9yYGAIePS5D8nD-XJdXWarvxdX1dkqa3MtYiYNawVC0RVNCXwaaQqtjIS8bKToAIxumsIIgITIotWoGtWUjerkKRNSHJLjve_Ou-cxPVs_utHbFFnnimupS1GcJhbfs1rvQvBo6p3vn8C_1ZzVU_f11H09dV9_dp80f_aaHhG_-FqnXC7EB4VUgtI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819497356</pqid></control><display><type>article</type><title>A Thermoelectric Energy-Harvesting Interface With Dual-Conversion Reconfigurable DC-DC Converter and Instantaneous Linear Extrapolation MPPT Method</title><source>IEEE Electronic Library (IEL)</source><creator>Park, Inho ; Jeon, Jinwoo ; Kim, Hyunjin ; Park, Taehyeong ; Jeong, Junwon ; Kim, Chulwoo</creator><creatorcontrib>Park, Inho ; Jeon, Jinwoo ; Kim, Hyunjin ; Park, Taehyeong ; Jeong, Junwon ; Kim, Chulwoo</creatorcontrib><description>This article presents a thermoelectric (TE) energy-harvesting interface with a reconfigurable dc-dc converter and a time-based instantaneous linear extrapolation (ILE) maximum power point tracking (MPPT) method. The proposed reconfigurable dc-dc converter comprises five switches for buck-boost operation and an additional switch for a dual-conversion mode in which battery power and TE generator (TEG) power are extracted in one cycle; therefore, the improved power density is achieved. The proposed ILE MPPT algorithm does not require TEG disconnection from the dc-dc converter, ensuring continuous TE energy extraction. The proposed MPPT method modulates the open-circuit voltage of TEG by performing linear extrapolation with a fully integrated circuit based on the steady-state voltage ripple information. The proposed interface is fabricated using a 180-nm CMOS process. The peak end-to-end efficiency of 90.48% is achieved with 0.2-V input voltage. The MPPT errors are measured up to 2.0% for the input capacitance variation and up to 1.067% for the equivalent resistance of TEG variation.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2022.3214839</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Batteries ; Conversion ; DC–DC converter ; Energy harvesting ; Extrapolation ; Integrated circuits ; Maximum power point trackers ; maximum power point tracking (MPPT) ; Maximum power tracking ; Open circuit voltage ; Reconfiguration ; State of charge ; Switches ; thermoelectric generator (TEG) ; Thermoelectricity ; Topology ; Transducers ; Voltage control ; Voltage converters (DC to DC) ; Wireless sensor networks ; wireless sensor node (WSN)</subject><ispartof>IEEE journal of solid-state circuits, 2023-06, Vol.58 (6), p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-4f0c3ea5d5b7a17a174f598f4a27b43daaf9bb5f3aa74f45c9e8b8b7b8d460343</citedby><cites>FETCH-LOGICAL-c293t-4f0c3ea5d5b7a17a174f598f4a27b43daaf9bb5f3aa74f45c9e8b8b7b8d460343</cites><orcidid>0000-0003-3411-3997 ; 0000-0001-8034-9672 ; 0000-0001-7999-3305 ; 0000-0003-2067-0557 ; 0000-0003-4379-7905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9946013$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9946013$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Park, Inho</creatorcontrib><creatorcontrib>Jeon, Jinwoo</creatorcontrib><creatorcontrib>Kim, Hyunjin</creatorcontrib><creatorcontrib>Park, Taehyeong</creatorcontrib><creatorcontrib>Jeong, Junwon</creatorcontrib><creatorcontrib>Kim, Chulwoo</creatorcontrib><title>A Thermoelectric Energy-Harvesting Interface With Dual-Conversion Reconfigurable DC-DC Converter and Instantaneous Linear Extrapolation MPPT Method</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>This article presents a thermoelectric (TE) energy-harvesting interface with a reconfigurable dc-dc converter and a time-based instantaneous linear extrapolation (ILE) maximum power point tracking (MPPT) method. The proposed reconfigurable dc-dc converter comprises five switches for buck-boost operation and an additional switch for a dual-conversion mode in which battery power and TE generator (TEG) power are extracted in one cycle; therefore, the improved power density is achieved. The proposed ILE MPPT algorithm does not require TEG disconnection from the dc-dc converter, ensuring continuous TE energy extraction. The proposed MPPT method modulates the open-circuit voltage of TEG by performing linear extrapolation with a fully integrated circuit based on the steady-state voltage ripple information. The proposed interface is fabricated using a 180-nm CMOS process. The peak end-to-end efficiency of 90.48% is achieved with 0.2-V input voltage. The MPPT errors are measured up to 2.0% for the input capacitance variation and up to 1.067% for the equivalent resistance of TEG variation.</description><subject>Algorithms</subject><subject>Batteries</subject><subject>Conversion</subject><subject>DC–DC converter</subject><subject>Energy harvesting</subject><subject>Extrapolation</subject><subject>Integrated circuits</subject><subject>Maximum power point trackers</subject><subject>maximum power point tracking (MPPT)</subject><subject>Maximum power tracking</subject><subject>Open circuit voltage</subject><subject>Reconfiguration</subject><subject>State of charge</subject><subject>Switches</subject><subject>thermoelectric generator (TEG)</subject><subject>Thermoelectricity</subject><subject>Topology</subject><subject>Transducers</subject><subject>Voltage control</subject><subject>Voltage converters (DC to DC)</subject><subject>Wireless sensor networks</subject><subject>wireless sensor node (WSN)</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UN1K5DAUDssKO-v6AMveBLzumDSpTS6lM_4xsqIju3fltD2ZqdRkTFLR5_CFTRkRDhwO3x_nI-Q3Z3POmT65vr-v5jnL87nIuVRCfyMzXhQq46X4_53MGOMq0zljP8jPEB7TKaXiM_J-Rtdb9E8OB2yj71u6tOg3b9kl-BcMsbcbemUjegMt0n993NLFCENWOfuCPvTO0jtsnTX9ZvTQDEgXVbao6B5POgq2Sw4hgk2Dbgx01VsET5ev0cPODRAnl5vb2zW9wbh13S9yYGAIePS5D8nD-XJdXWarvxdX1dkqa3MtYiYNawVC0RVNCXwaaQqtjIS8bKToAIxumsIIgITIotWoGtWUjerkKRNSHJLjve_Ou-cxPVs_utHbFFnnimupS1GcJhbfs1rvQvBo6p3vn8C_1ZzVU_f11H09dV9_dp80f_aaHhG_-FqnXC7EB4VUgtI</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Park, Inho</creator><creator>Jeon, Jinwoo</creator><creator>Kim, Hyunjin</creator><creator>Park, Taehyeong</creator><creator>Jeong, Junwon</creator><creator>Kim, Chulwoo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3411-3997</orcidid><orcidid>https://orcid.org/0000-0001-8034-9672</orcidid><orcidid>https://orcid.org/0000-0001-7999-3305</orcidid><orcidid>https://orcid.org/0000-0003-2067-0557</orcidid><orcidid>https://orcid.org/0000-0003-4379-7905</orcidid></search><sort><creationdate>20230601</creationdate><title>A Thermoelectric Energy-Harvesting Interface With Dual-Conversion Reconfigurable DC-DC Converter and Instantaneous Linear Extrapolation MPPT Method</title><author>Park, Inho ; Jeon, Jinwoo ; Kim, Hyunjin ; Park, Taehyeong ; Jeong, Junwon ; Kim, Chulwoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-4f0c3ea5d5b7a17a174f598f4a27b43daaf9bb5f3aa74f45c9e8b8b7b8d460343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Batteries</topic><topic>Conversion</topic><topic>DC–DC converter</topic><topic>Energy harvesting</topic><topic>Extrapolation</topic><topic>Integrated circuits</topic><topic>Maximum power point trackers</topic><topic>maximum power point tracking (MPPT)</topic><topic>Maximum power tracking</topic><topic>Open circuit voltage</topic><topic>Reconfiguration</topic><topic>State of charge</topic><topic>Switches</topic><topic>thermoelectric generator (TEG)</topic><topic>Thermoelectricity</topic><topic>Topology</topic><topic>Transducers</topic><topic>Voltage control</topic><topic>Voltage converters (DC to DC)</topic><topic>Wireless sensor networks</topic><topic>wireless sensor node (WSN)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Inho</creatorcontrib><creatorcontrib>Jeon, Jinwoo</creatorcontrib><creatorcontrib>Kim, Hyunjin</creatorcontrib><creatorcontrib>Park, Taehyeong</creatorcontrib><creatorcontrib>Jeong, Junwon</creatorcontrib><creatorcontrib>Kim, Chulwoo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Park, Inho</au><au>Jeon, Jinwoo</au><au>Kim, Hyunjin</au><au>Park, Taehyeong</au><au>Jeong, Junwon</au><au>Kim, Chulwoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Thermoelectric Energy-Harvesting Interface With Dual-Conversion Reconfigurable DC-DC Converter and Instantaneous Linear Extrapolation MPPT Method</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>58</volume><issue>6</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>This article presents a thermoelectric (TE) energy-harvesting interface with a reconfigurable dc-dc converter and a time-based instantaneous linear extrapolation (ILE) maximum power point tracking (MPPT) method. The proposed reconfigurable dc-dc converter comprises five switches for buck-boost operation and an additional switch for a dual-conversion mode in which battery power and TE generator (TEG) power are extracted in one cycle; therefore, the improved power density is achieved. The proposed ILE MPPT algorithm does not require TEG disconnection from the dc-dc converter, ensuring continuous TE energy extraction. The proposed MPPT method modulates the open-circuit voltage of TEG by performing linear extrapolation with a fully integrated circuit based on the steady-state voltage ripple information. The proposed interface is fabricated using a 180-nm CMOS process. The peak end-to-end efficiency of 90.48% is achieved with 0.2-V input voltage. The MPPT errors are measured up to 2.0% for the input capacitance variation and up to 1.067% for the equivalent resistance of TEG variation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2022.3214839</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3411-3997</orcidid><orcidid>https://orcid.org/0000-0001-8034-9672</orcidid><orcidid>https://orcid.org/0000-0001-7999-3305</orcidid><orcidid>https://orcid.org/0000-0003-2067-0557</orcidid><orcidid>https://orcid.org/0000-0003-4379-7905</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2023-06, Vol.58 (6), p.1-13
issn 0018-9200
1558-173X
language eng
recordid cdi_ieee_primary_9946013
source IEEE Electronic Library (IEL)
subjects Algorithms
Batteries
Conversion
DC–DC converter
Energy harvesting
Extrapolation
Integrated circuits
Maximum power point trackers
maximum power point tracking (MPPT)
Maximum power tracking
Open circuit voltage
Reconfiguration
State of charge
Switches
thermoelectric generator (TEG)
Thermoelectricity
Topology
Transducers
Voltage control
Voltage converters (DC to DC)
Wireless sensor networks
wireless sensor node (WSN)
title A Thermoelectric Energy-Harvesting Interface With Dual-Conversion Reconfigurable DC-DC Converter and Instantaneous Linear Extrapolation MPPT Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A55%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Thermoelectric%20Energy-Harvesting%20Interface%20With%20Dual-Conversion%20Reconfigurable%20DC-DC%20Converter%20and%20Instantaneous%20Linear%20Extrapolation%20MPPT%20Method&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Park,%20Inho&rft.date=2023-06-01&rft.volume=58&rft.issue=6&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2022.3214839&rft_dat=%3Cproquest_RIE%3E2819497356%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819497356&rft_id=info:pmid/&rft_ieee_id=9946013&rfr_iscdi=true