A Thermoelectric Energy-Harvesting Interface With Dual-Conversion Reconfigurable DC-DC Converter and Instantaneous Linear Extrapolation MPPT Method
This article presents a thermoelectric (TE) energy-harvesting interface with a reconfigurable dc-dc converter and a time-based instantaneous linear extrapolation (ILE) maximum power point tracking (MPPT) method. The proposed reconfigurable dc-dc converter comprises five switches for buck-boost opera...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2023-06, Vol.58 (6), p.1-13 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE journal of solid-state circuits |
container_volume | 58 |
creator | Park, Inho Jeon, Jinwoo Kim, Hyunjin Park, Taehyeong Jeong, Junwon Kim, Chulwoo |
description | This article presents a thermoelectric (TE) energy-harvesting interface with a reconfigurable dc-dc converter and a time-based instantaneous linear extrapolation (ILE) maximum power point tracking (MPPT) method. The proposed reconfigurable dc-dc converter comprises five switches for buck-boost operation and an additional switch for a dual-conversion mode in which battery power and TE generator (TEG) power are extracted in one cycle; therefore, the improved power density is achieved. The proposed ILE MPPT algorithm does not require TEG disconnection from the dc-dc converter, ensuring continuous TE energy extraction. The proposed MPPT method modulates the open-circuit voltage of TEG by performing linear extrapolation with a fully integrated circuit based on the steady-state voltage ripple information. The proposed interface is fabricated using a 180-nm CMOS process. The peak end-to-end efficiency of 90.48% is achieved with 0.2-V input voltage. The MPPT errors are measured up to 2.0% for the input capacitance variation and up to 1.067% for the equivalent resistance of TEG variation. |
doi_str_mv | 10.1109/JSSC.2022.3214839 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9946013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9946013</ieee_id><sourcerecordid>2819497356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-4f0c3ea5d5b7a17a174f598f4a27b43daaf9bb5f3aa74f45c9e8b8b7b8d460343</originalsourceid><addsrcrecordid>eNo9UN1K5DAUDssKO-v6AMveBLzumDSpTS6lM_4xsqIju3fltD2ZqdRkTFLR5_CFTRkRDhwO3x_nI-Q3Z3POmT65vr-v5jnL87nIuVRCfyMzXhQq46X4_53MGOMq0zljP8jPEB7TKaXiM_J-Rtdb9E8OB2yj71u6tOg3b9kl-BcMsbcbemUjegMt0n993NLFCENWOfuCPvTO0jtsnTX9ZvTQDEgXVbao6B5POgq2Sw4hgk2Dbgx01VsET5ev0cPODRAnl5vb2zW9wbh13S9yYGAIePS5D8nD-XJdXWarvxdX1dkqa3MtYiYNawVC0RVNCXwaaQqtjIS8bKToAIxumsIIgITIotWoGtWUjerkKRNSHJLjve_Ou-cxPVs_utHbFFnnimupS1GcJhbfs1rvQvBo6p3vn8C_1ZzVU_f11H09dV9_dp80f_aaHhG_-FqnXC7EB4VUgtI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819497356</pqid></control><display><type>article</type><title>A Thermoelectric Energy-Harvesting Interface With Dual-Conversion Reconfigurable DC-DC Converter and Instantaneous Linear Extrapolation MPPT Method</title><source>IEEE Electronic Library (IEL)</source><creator>Park, Inho ; Jeon, Jinwoo ; Kim, Hyunjin ; Park, Taehyeong ; Jeong, Junwon ; Kim, Chulwoo</creator><creatorcontrib>Park, Inho ; Jeon, Jinwoo ; Kim, Hyunjin ; Park, Taehyeong ; Jeong, Junwon ; Kim, Chulwoo</creatorcontrib><description>This article presents a thermoelectric (TE) energy-harvesting interface with a reconfigurable dc-dc converter and a time-based instantaneous linear extrapolation (ILE) maximum power point tracking (MPPT) method. The proposed reconfigurable dc-dc converter comprises five switches for buck-boost operation and an additional switch for a dual-conversion mode in which battery power and TE generator (TEG) power are extracted in one cycle; therefore, the improved power density is achieved. The proposed ILE MPPT algorithm does not require TEG disconnection from the dc-dc converter, ensuring continuous TE energy extraction. The proposed MPPT method modulates the open-circuit voltage of TEG by performing linear extrapolation with a fully integrated circuit based on the steady-state voltage ripple information. The proposed interface is fabricated using a 180-nm CMOS process. The peak end-to-end efficiency of 90.48% is achieved with 0.2-V input voltage. The MPPT errors are measured up to 2.0% for the input capacitance variation and up to 1.067% for the equivalent resistance of TEG variation.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2022.3214839</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Batteries ; Conversion ; DC–DC converter ; Energy harvesting ; Extrapolation ; Integrated circuits ; Maximum power point trackers ; maximum power point tracking (MPPT) ; Maximum power tracking ; Open circuit voltage ; Reconfiguration ; State of charge ; Switches ; thermoelectric generator (TEG) ; Thermoelectricity ; Topology ; Transducers ; Voltage control ; Voltage converters (DC to DC) ; Wireless sensor networks ; wireless sensor node (WSN)</subject><ispartof>IEEE journal of solid-state circuits, 2023-06, Vol.58 (6), p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-4f0c3ea5d5b7a17a174f598f4a27b43daaf9bb5f3aa74f45c9e8b8b7b8d460343</citedby><cites>FETCH-LOGICAL-c293t-4f0c3ea5d5b7a17a174f598f4a27b43daaf9bb5f3aa74f45c9e8b8b7b8d460343</cites><orcidid>0000-0003-3411-3997 ; 0000-0001-8034-9672 ; 0000-0001-7999-3305 ; 0000-0003-2067-0557 ; 0000-0003-4379-7905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9946013$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9946013$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Park, Inho</creatorcontrib><creatorcontrib>Jeon, Jinwoo</creatorcontrib><creatorcontrib>Kim, Hyunjin</creatorcontrib><creatorcontrib>Park, Taehyeong</creatorcontrib><creatorcontrib>Jeong, Junwon</creatorcontrib><creatorcontrib>Kim, Chulwoo</creatorcontrib><title>A Thermoelectric Energy-Harvesting Interface With Dual-Conversion Reconfigurable DC-DC Converter and Instantaneous Linear Extrapolation MPPT Method</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>This article presents a thermoelectric (TE) energy-harvesting interface with a reconfigurable dc-dc converter and a time-based instantaneous linear extrapolation (ILE) maximum power point tracking (MPPT) method. The proposed reconfigurable dc-dc converter comprises five switches for buck-boost operation and an additional switch for a dual-conversion mode in which battery power and TE generator (TEG) power are extracted in one cycle; therefore, the improved power density is achieved. The proposed ILE MPPT algorithm does not require TEG disconnection from the dc-dc converter, ensuring continuous TE energy extraction. The proposed MPPT method modulates the open-circuit voltage of TEG by performing linear extrapolation with a fully integrated circuit based on the steady-state voltage ripple information. The proposed interface is fabricated using a 180-nm CMOS process. The peak end-to-end efficiency of 90.48% is achieved with 0.2-V input voltage. The MPPT errors are measured up to 2.0% for the input capacitance variation and up to 1.067% for the equivalent resistance of TEG variation.</description><subject>Algorithms</subject><subject>Batteries</subject><subject>Conversion</subject><subject>DC–DC converter</subject><subject>Energy harvesting</subject><subject>Extrapolation</subject><subject>Integrated circuits</subject><subject>Maximum power point trackers</subject><subject>maximum power point tracking (MPPT)</subject><subject>Maximum power tracking</subject><subject>Open circuit voltage</subject><subject>Reconfiguration</subject><subject>State of charge</subject><subject>Switches</subject><subject>thermoelectric generator (TEG)</subject><subject>Thermoelectricity</subject><subject>Topology</subject><subject>Transducers</subject><subject>Voltage control</subject><subject>Voltage converters (DC to DC)</subject><subject>Wireless sensor networks</subject><subject>wireless sensor node (WSN)</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UN1K5DAUDssKO-v6AMveBLzumDSpTS6lM_4xsqIju3fltD2ZqdRkTFLR5_CFTRkRDhwO3x_nI-Q3Z3POmT65vr-v5jnL87nIuVRCfyMzXhQq46X4_53MGOMq0zljP8jPEB7TKaXiM_J-Rtdb9E8OB2yj71u6tOg3b9kl-BcMsbcbemUjegMt0n993NLFCENWOfuCPvTO0jtsnTX9ZvTQDEgXVbao6B5POgq2Sw4hgk2Dbgx01VsET5ev0cPODRAnl5vb2zW9wbh13S9yYGAIePS5D8nD-XJdXWarvxdX1dkqa3MtYiYNawVC0RVNCXwaaQqtjIS8bKToAIxumsIIgITIotWoGtWUjerkKRNSHJLjve_Ou-cxPVs_utHbFFnnimupS1GcJhbfs1rvQvBo6p3vn8C_1ZzVU_f11H09dV9_dp80f_aaHhG_-FqnXC7EB4VUgtI</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Park, Inho</creator><creator>Jeon, Jinwoo</creator><creator>Kim, Hyunjin</creator><creator>Park, Taehyeong</creator><creator>Jeong, Junwon</creator><creator>Kim, Chulwoo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3411-3997</orcidid><orcidid>https://orcid.org/0000-0001-8034-9672</orcidid><orcidid>https://orcid.org/0000-0001-7999-3305</orcidid><orcidid>https://orcid.org/0000-0003-2067-0557</orcidid><orcidid>https://orcid.org/0000-0003-4379-7905</orcidid></search><sort><creationdate>20230601</creationdate><title>A Thermoelectric Energy-Harvesting Interface With Dual-Conversion Reconfigurable DC-DC Converter and Instantaneous Linear Extrapolation MPPT Method</title><author>Park, Inho ; Jeon, Jinwoo ; Kim, Hyunjin ; Park, Taehyeong ; Jeong, Junwon ; Kim, Chulwoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-4f0c3ea5d5b7a17a174f598f4a27b43daaf9bb5f3aa74f45c9e8b8b7b8d460343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Batteries</topic><topic>Conversion</topic><topic>DC–DC converter</topic><topic>Energy harvesting</topic><topic>Extrapolation</topic><topic>Integrated circuits</topic><topic>Maximum power point trackers</topic><topic>maximum power point tracking (MPPT)</topic><topic>Maximum power tracking</topic><topic>Open circuit voltage</topic><topic>Reconfiguration</topic><topic>State of charge</topic><topic>Switches</topic><topic>thermoelectric generator (TEG)</topic><topic>Thermoelectricity</topic><topic>Topology</topic><topic>Transducers</topic><topic>Voltage control</topic><topic>Voltage converters (DC to DC)</topic><topic>Wireless sensor networks</topic><topic>wireless sensor node (WSN)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Inho</creatorcontrib><creatorcontrib>Jeon, Jinwoo</creatorcontrib><creatorcontrib>Kim, Hyunjin</creatorcontrib><creatorcontrib>Park, Taehyeong</creatorcontrib><creatorcontrib>Jeong, Junwon</creatorcontrib><creatorcontrib>Kim, Chulwoo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Park, Inho</au><au>Jeon, Jinwoo</au><au>Kim, Hyunjin</au><au>Park, Taehyeong</au><au>Jeong, Junwon</au><au>Kim, Chulwoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Thermoelectric Energy-Harvesting Interface With Dual-Conversion Reconfigurable DC-DC Converter and Instantaneous Linear Extrapolation MPPT Method</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>58</volume><issue>6</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>This article presents a thermoelectric (TE) energy-harvesting interface with a reconfigurable dc-dc converter and a time-based instantaneous linear extrapolation (ILE) maximum power point tracking (MPPT) method. The proposed reconfigurable dc-dc converter comprises five switches for buck-boost operation and an additional switch for a dual-conversion mode in which battery power and TE generator (TEG) power are extracted in one cycle; therefore, the improved power density is achieved. The proposed ILE MPPT algorithm does not require TEG disconnection from the dc-dc converter, ensuring continuous TE energy extraction. The proposed MPPT method modulates the open-circuit voltage of TEG by performing linear extrapolation with a fully integrated circuit based on the steady-state voltage ripple information. The proposed interface is fabricated using a 180-nm CMOS process. The peak end-to-end efficiency of 90.48% is achieved with 0.2-V input voltage. The MPPT errors are measured up to 2.0% for the input capacitance variation and up to 1.067% for the equivalent resistance of TEG variation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2022.3214839</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3411-3997</orcidid><orcidid>https://orcid.org/0000-0001-8034-9672</orcidid><orcidid>https://orcid.org/0000-0001-7999-3305</orcidid><orcidid>https://orcid.org/0000-0003-2067-0557</orcidid><orcidid>https://orcid.org/0000-0003-4379-7905</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2023-06, Vol.58 (6), p.1-13 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_ieee_primary_9946013 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Batteries Conversion DC–DC converter Energy harvesting Extrapolation Integrated circuits Maximum power point trackers maximum power point tracking (MPPT) Maximum power tracking Open circuit voltage Reconfiguration State of charge Switches thermoelectric generator (TEG) Thermoelectricity Topology Transducers Voltage control Voltage converters (DC to DC) Wireless sensor networks wireless sensor node (WSN) |
title | A Thermoelectric Energy-Harvesting Interface With Dual-Conversion Reconfigurable DC-DC Converter and Instantaneous Linear Extrapolation MPPT Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A55%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Thermoelectric%20Energy-Harvesting%20Interface%20With%20Dual-Conversion%20Reconfigurable%20DC-DC%20Converter%20and%20Instantaneous%20Linear%20Extrapolation%20MPPT%20Method&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Park,%20Inho&rft.date=2023-06-01&rft.volume=58&rft.issue=6&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2022.3214839&rft_dat=%3Cproquest_RIE%3E2819497356%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819497356&rft_id=info:pmid/&rft_ieee_id=9946013&rfr_iscdi=true |