Classification of (q, q)-Biprojective APN Functions

In this paper, we classify (q,q) -biprojective almost perfect nonlinear (APN) functions over \mathbb {L}\times \mathbb {L} under the natural left and right action of \mathop {\mathrm {GL}}\nolimits (2, \mathbb {L}) where \mathbb {L} is a finite field of characteristic 2. This shows in particu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2023-03, Vol.69 (3), p.1988-1999
1. Verfasser: Gologlu, Faruk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1999
container_issue 3
container_start_page 1988
container_title IEEE transactions on information theory
container_volume 69
creator Gologlu, Faruk
description In this paper, we classify (q,q) -biprojective almost perfect nonlinear (APN) functions over \mathbb {L}\times \mathbb {L} under the natural left and right action of \mathop {\mathrm {GL}}\nolimits (2, \mathbb {L}) where \mathbb {L} is a finite field of characteristic 2. This shows in particular that the only quadratic APN functions (up to {\mathsf {CCZ}} -equivalence) over \mathbb {L}\times \mathbb {L} that satisfy the so-called subfield property are the Gold functions and the function \kappa: \mathbb {F}_{64} \to \mathbb {F}_{64} which is the only known APN function that is equivalent to a permutation over \mathbb {L}\times \mathbb {L} up to {\mathsf {CCZ}} -equivalence as shown in Browning et al. (2010). Deciding whether there exist other quadratic APN functions {\mathsf {CCZ}} -equivalent to permutations that satisfy subfield property or equivalently, generalizing \kappa to higher dimensions was an open problem listed for instance in Carlet (2015) as one of the interesting open problems on cryptographic functions.
doi_str_mv 10.1109/TIT.2022.3220724
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9943543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9943543</ieee_id><sourcerecordid>2777581114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-1c1705db6cfc81acd6eb3c32741a2ff86be121eed0999554c84afa42ae3cfcac3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wcuCFwW3ZibJZnNsi9VCUQ_1HNJ0Aim12262gv_elBZPw8D7vhkeY7fABwDcPM-n8wFyxIFA5BrlGeuBUro0lZLnrMc51KWRsr5kVymt8ioVYI-J8dqlFEP0rovNpmhC8bB7KnaP5Shu22ZFvos_VAw_34vJfuMPTLpmF8GtE92cZp99TV7m47dy9vE6HQ9npUcDXQkeNFfLReWDr8H5ZUUL4QVqCQ5DqKsFAQLRkhtjlJK-li44iY5ETjgv-uz-2Jsf2e0pdXbV7NtNPmlRa61qAJCZ4kfKt01KLQW7beO3a38tcHtQY7Mae1BjT2py5O4YiUT0jxsjhZJC_AF6P15N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777581114</pqid></control><display><type>article</type><title>Classification of (q, q)-Biprojective APN Functions</title><source>IEEE Electronic Library (IEL)</source><creator>Gologlu, Faruk</creator><creatorcontrib>Gologlu, Faruk</creatorcontrib><description><![CDATA[In this paper, we classify <inline-formula> <tex-math notation="LaTeX">(q,q) </tex-math></inline-formula>-biprojective almost perfect nonlinear (APN) functions over <inline-formula> <tex-math notation="LaTeX">\mathbb {L}\times \mathbb {L} </tex-math></inline-formula> under the natural left and right action of <inline-formula> <tex-math notation="LaTeX">\mathop {\mathrm {GL}}\nolimits (2, \mathbb {L}) </tex-math></inline-formula> where <inline-formula> <tex-math notation="LaTeX">\mathbb {L} </tex-math></inline-formula> is a finite field of characteristic 2. This shows in particular that the only quadratic APN functions (up to <inline-formula> <tex-math notation="LaTeX">{\mathsf {CCZ}} </tex-math></inline-formula>-equivalence) over <inline-formula> <tex-math notation="LaTeX">\mathbb {L}\times \mathbb {L} </tex-math></inline-formula> that satisfy the so-called subfield property are the Gold functions and the function <inline-formula> <tex-math notation="LaTeX">\kappa: \mathbb {F}_{64} \to \mathbb {F}_{64} </tex-math></inline-formula> which is the only known APN function that is equivalent to a permutation over <inline-formula> <tex-math notation="LaTeX">\mathbb {L}\times \mathbb {L} </tex-math></inline-formula> up to <inline-formula> <tex-math notation="LaTeX">{\mathsf {CCZ}} </tex-math></inline-formula>-equivalence as shown in Browning et al. (2010). Deciding whether there exist other quadratic APN functions <inline-formula> <tex-math notation="LaTeX">{\mathsf {CCZ}} </tex-math></inline-formula>-equivalent to permutations that satisfy subfield property or equivalently, generalizing <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula> to higher dimensions was an open problem listed for instance in Carlet (2015) as one of the interesting open problems on cryptographic functions.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2022.3220724</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>almost perfect nonlinear (APN) functions ; Boolean functions ; Cryptography ; Equivalence ; Fields (mathematics) ; Gold ; Instruments ; Mathematics ; Perfect nonlinearity ; Permutations ; Physics ; Resistance</subject><ispartof>IEEE transactions on information theory, 2023-03, Vol.69 (3), p.1988-1999</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-1c1705db6cfc81acd6eb3c32741a2ff86be121eed0999554c84afa42ae3cfcac3</citedby><cites>FETCH-LOGICAL-c291t-1c1705db6cfc81acd6eb3c32741a2ff86be121eed0999554c84afa42ae3cfcac3</cites><orcidid>0000-0002-1223-3093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9943543$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9943543$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gologlu, Faruk</creatorcontrib><title>Classification of (q, q)-Biprojective APN Functions</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[In this paper, we classify <inline-formula> <tex-math notation="LaTeX">(q,q) </tex-math></inline-formula>-biprojective almost perfect nonlinear (APN) functions over <inline-formula> <tex-math notation="LaTeX">\mathbb {L}\times \mathbb {L} </tex-math></inline-formula> under the natural left and right action of <inline-formula> <tex-math notation="LaTeX">\mathop {\mathrm {GL}}\nolimits (2, \mathbb {L}) </tex-math></inline-formula> where <inline-formula> <tex-math notation="LaTeX">\mathbb {L} </tex-math></inline-formula> is a finite field of characteristic 2. This shows in particular that the only quadratic APN functions (up to <inline-formula> <tex-math notation="LaTeX">{\mathsf {CCZ}} </tex-math></inline-formula>-equivalence) over <inline-formula> <tex-math notation="LaTeX">\mathbb {L}\times \mathbb {L} </tex-math></inline-formula> that satisfy the so-called subfield property are the Gold functions and the function <inline-formula> <tex-math notation="LaTeX">\kappa: \mathbb {F}_{64} \to \mathbb {F}_{64} </tex-math></inline-formula> which is the only known APN function that is equivalent to a permutation over <inline-formula> <tex-math notation="LaTeX">\mathbb {L}\times \mathbb {L} </tex-math></inline-formula> up to <inline-formula> <tex-math notation="LaTeX">{\mathsf {CCZ}} </tex-math></inline-formula>-equivalence as shown in Browning et al. (2010). Deciding whether there exist other quadratic APN functions <inline-formula> <tex-math notation="LaTeX">{\mathsf {CCZ}} </tex-math></inline-formula>-equivalent to permutations that satisfy subfield property or equivalently, generalizing <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula> to higher dimensions was an open problem listed for instance in Carlet (2015) as one of the interesting open problems on cryptographic functions.]]></description><subject>almost perfect nonlinear (APN) functions</subject><subject>Boolean functions</subject><subject>Cryptography</subject><subject>Equivalence</subject><subject>Fields (mathematics)</subject><subject>Gold</subject><subject>Instruments</subject><subject>Mathematics</subject><subject>Perfect nonlinearity</subject><subject>Permutations</subject><subject>Physics</subject><subject>Resistance</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wcuCFwW3ZibJZnNsi9VCUQ_1HNJ0Aim12262gv_elBZPw8D7vhkeY7fABwDcPM-n8wFyxIFA5BrlGeuBUro0lZLnrMc51KWRsr5kVymt8ioVYI-J8dqlFEP0rovNpmhC8bB7KnaP5Shu22ZFvos_VAw_34vJfuMPTLpmF8GtE92cZp99TV7m47dy9vE6HQ9npUcDXQkeNFfLReWDr8H5ZUUL4QVqCQ5DqKsFAQLRkhtjlJK-li44iY5ETjgv-uz-2Jsf2e0pdXbV7NtNPmlRa61qAJCZ4kfKt01KLQW7beO3a38tcHtQY7Mae1BjT2py5O4YiUT0jxsjhZJC_AF6P15N</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Gologlu, Faruk</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1223-3093</orcidid></search><sort><creationdate>20230301</creationdate><title>Classification of (q, q)-Biprojective APN Functions</title><author>Gologlu, Faruk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-1c1705db6cfc81acd6eb3c32741a2ff86be121eed0999554c84afa42ae3cfcac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>almost perfect nonlinear (APN) functions</topic><topic>Boolean functions</topic><topic>Cryptography</topic><topic>Equivalence</topic><topic>Fields (mathematics)</topic><topic>Gold</topic><topic>Instruments</topic><topic>Mathematics</topic><topic>Perfect nonlinearity</topic><topic>Permutations</topic><topic>Physics</topic><topic>Resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gologlu, Faruk</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gologlu, Faruk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of (q, q)-Biprojective APN Functions</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>69</volume><issue>3</issue><spage>1988</spage><epage>1999</epage><pages>1988-1999</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[In this paper, we classify <inline-formula> <tex-math notation="LaTeX">(q,q) </tex-math></inline-formula>-biprojective almost perfect nonlinear (APN) functions over <inline-formula> <tex-math notation="LaTeX">\mathbb {L}\times \mathbb {L} </tex-math></inline-formula> under the natural left and right action of <inline-formula> <tex-math notation="LaTeX">\mathop {\mathrm {GL}}\nolimits (2, \mathbb {L}) </tex-math></inline-formula> where <inline-formula> <tex-math notation="LaTeX">\mathbb {L} </tex-math></inline-formula> is a finite field of characteristic 2. This shows in particular that the only quadratic APN functions (up to <inline-formula> <tex-math notation="LaTeX">{\mathsf {CCZ}} </tex-math></inline-formula>-equivalence) over <inline-formula> <tex-math notation="LaTeX">\mathbb {L}\times \mathbb {L} </tex-math></inline-formula> that satisfy the so-called subfield property are the Gold functions and the function <inline-formula> <tex-math notation="LaTeX">\kappa: \mathbb {F}_{64} \to \mathbb {F}_{64} </tex-math></inline-formula> which is the only known APN function that is equivalent to a permutation over <inline-formula> <tex-math notation="LaTeX">\mathbb {L}\times \mathbb {L} </tex-math></inline-formula> up to <inline-formula> <tex-math notation="LaTeX">{\mathsf {CCZ}} </tex-math></inline-formula>-equivalence as shown in Browning et al. (2010). Deciding whether there exist other quadratic APN functions <inline-formula> <tex-math notation="LaTeX">{\mathsf {CCZ}} </tex-math></inline-formula>-equivalent to permutations that satisfy subfield property or equivalently, generalizing <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula> to higher dimensions was an open problem listed for instance in Carlet (2015) as one of the interesting open problems on cryptographic functions.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2022.3220724</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1223-3093</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2023-03, Vol.69 (3), p.1988-1999
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_9943543
source IEEE Electronic Library (IEL)
subjects almost perfect nonlinear (APN) functions
Boolean functions
Cryptography
Equivalence
Fields (mathematics)
Gold
Instruments
Mathematics
Perfect nonlinearity
Permutations
Physics
Resistance
title Classification of (q, q)-Biprojective APN Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A46%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20(q,%20q)-Biprojective%20APN%20Functions&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Gologlu,%20Faruk&rft.date=2023-03-01&rft.volume=69&rft.issue=3&rft.spage=1988&rft.epage=1999&rft.pages=1988-1999&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2022.3220724&rft_dat=%3Cproquest_RIE%3E2777581114%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777581114&rft_id=info:pmid/&rft_ieee_id=9943543&rfr_iscdi=true