Dual-Tuning: Joint Prototype Transfer and Structure Regularization for Compatible Feature Learning
Visual retrieval system faces frequent model update and deployment. It is a heavy workload to re-extract features of the whole database every time. Feature compatibility enables the learned new visual features to be directly compared with the old features stored in the database. In this way, when up...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2023-01, Vol.25, p.1-13 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on multimedia |
container_volume | 25 |
creator | Bai, Yan Jiao, Jile Lou, Yihang Wu, Shengsen Liu, Jun Feng, Xuetao Duan, Ling-Yu |
description | Visual retrieval system faces frequent model update and deployment. It is a heavy workload to re-extract features of the whole database every time. Feature compatibility enables the learned new visual features to be directly compared with the old features stored in the database. In this way, when updating the deployed model, we can bypass the inflexible and time-consuming feature re-extraction process. However, the old feature space that needs to be compatible is not ideal and faces outlier samples. Besides, the new and old models may be supervised by different losses, which will further causes distribution discrepancy problem between these two feature spaces. In this work, we propose a global optimization Dual-Tuning method to obtain feature compatibility against different networks and losses. A feature-level prototype loss is proposed to explicitly align two types of embedding features, by transferring global prototype information. Furthermore, we design a component-level mutual structural regularization to implicitly optimize the feature intrinsic structure. Experiments are conducted on six datasets, including person ReID datasets, face recognition datasets, and million-scale ImageNet and Place365. Experimental results demonstrate that our Dual-Tuning is able to obtain feature compatibility without sacrificing performance. |
doi_str_mv | 10.1109/TMM.2022.3219680 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9939072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9939072</ieee_id><sourcerecordid>2887111654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-81643404a363ad836f84d958883d61c241b76c8346293d17f692315f9eb765093</originalsourceid><addsrcrecordid>eNo9kElPwzAQRi0EEmW5I3GxxDllxnYcmxsqlEWtQBDOlps4Vao0Lk5yKL8el1acZtH7ZqRHyBXCGBH0bT6fjxkwNuYMtVRwREaoBSYAWXYc-5RBohnCKTnruhUAihSyEVk8DLZJ8qGt2-UdffV129P34HvfbzeO5sG2XeUCtW1JP_swFP0QHP1wy6Gxof6xfe1bWvlAJ369idOicXTq7B81czbszl6Qk8o2nbs81HPyNX3MJ8_J7O3pZXI_SwomRJ8olIILEJZLbkvFZaVEqVOlFC8lRgYXmSwUF5JpXmJWSc04ppV2cZ-C5ufkZn93E_z34LrerPwQ2vjSMKUyRJSpiBTsqSL4rguuMptQr23YGgSzM2miSbMzaQ4mY-R6H6mdc_-41lxDxvgviahuIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887111654</pqid></control><display><type>article</type><title>Dual-Tuning: Joint Prototype Transfer and Structure Regularization for Compatible Feature Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Bai, Yan ; Jiao, Jile ; Lou, Yihang ; Wu, Shengsen ; Liu, Jun ; Feng, Xuetao ; Duan, Ling-Yu</creator><creatorcontrib>Bai, Yan ; Jiao, Jile ; Lou, Yihang ; Wu, Shengsen ; Liu, Jun ; Feng, Xuetao ; Duan, Ling-Yu</creatorcontrib><description>Visual retrieval system faces frequent model update and deployment. It is a heavy workload to re-extract features of the whole database every time. Feature compatibility enables the learned new visual features to be directly compared with the old features stored in the database. In this way, when updating the deployed model, we can bypass the inflexible and time-consuming feature re-extraction process. However, the old feature space that needs to be compatible is not ideal and faces outlier samples. Besides, the new and old models may be supervised by different losses, which will further causes distribution discrepancy problem between these two feature spaces. In this work, we propose a global optimization Dual-Tuning method to obtain feature compatibility against different networks and losses. A feature-level prototype loss is proposed to explicitly align two types of embedding features, by transferring global prototype information. Furthermore, we design a component-level mutual structural regularization to implicitly optimize the feature intrinsic structure. Experiments are conducted on six datasets, including person ReID datasets, face recognition datasets, and million-scale ImageNet and Place365. Experimental results demonstrate that our Dual-Tuning is able to obtain feature compatibility without sacrificing performance.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2022.3219680</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Compatibility ; Compatible feature learning ; Datasets ; Face recognition ; Faces ; Feature extraction ; Global optimization ; Optimization ; Outliers (statistics) ; prototype transfer ; Prototypes ; Regularization ; structure regularization ; Training ; Tuning ; Visualization</subject><ispartof>IEEE transactions on multimedia, 2023-01, Vol.25, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-81643404a363ad836f84d958883d61c241b76c8346293d17f692315f9eb765093</cites><orcidid>0000-0002-4491-2023 ; 0000-0002-2152-9611 ; 0000-0002-4365-4165 ; 0000-0003-2644-717X ; 0000-0002-8143-389X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9939072$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9939072$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bai, Yan</creatorcontrib><creatorcontrib>Jiao, Jile</creatorcontrib><creatorcontrib>Lou, Yihang</creatorcontrib><creatorcontrib>Wu, Shengsen</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Feng, Xuetao</creatorcontrib><creatorcontrib>Duan, Ling-Yu</creatorcontrib><title>Dual-Tuning: Joint Prototype Transfer and Structure Regularization for Compatible Feature Learning</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Visual retrieval system faces frequent model update and deployment. It is a heavy workload to re-extract features of the whole database every time. Feature compatibility enables the learned new visual features to be directly compared with the old features stored in the database. In this way, when updating the deployed model, we can bypass the inflexible and time-consuming feature re-extraction process. However, the old feature space that needs to be compatible is not ideal and faces outlier samples. Besides, the new and old models may be supervised by different losses, which will further causes distribution discrepancy problem between these two feature spaces. In this work, we propose a global optimization Dual-Tuning method to obtain feature compatibility against different networks and losses. A feature-level prototype loss is proposed to explicitly align two types of embedding features, by transferring global prototype information. Furthermore, we design a component-level mutual structural regularization to implicitly optimize the feature intrinsic structure. Experiments are conducted on six datasets, including person ReID datasets, face recognition datasets, and million-scale ImageNet and Place365. Experimental results demonstrate that our Dual-Tuning is able to obtain feature compatibility without sacrificing performance.</description><subject>Compatibility</subject><subject>Compatible feature learning</subject><subject>Datasets</subject><subject>Face recognition</subject><subject>Faces</subject><subject>Feature extraction</subject><subject>Global optimization</subject><subject>Optimization</subject><subject>Outliers (statistics)</subject><subject>prototype transfer</subject><subject>Prototypes</subject><subject>Regularization</subject><subject>structure regularization</subject><subject>Training</subject><subject>Tuning</subject><subject>Visualization</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kElPwzAQRi0EEmW5I3GxxDllxnYcmxsqlEWtQBDOlps4Vao0Lk5yKL8el1acZtH7ZqRHyBXCGBH0bT6fjxkwNuYMtVRwREaoBSYAWXYc-5RBohnCKTnruhUAihSyEVk8DLZJ8qGt2-UdffV129P34HvfbzeO5sG2XeUCtW1JP_swFP0QHP1wy6Gxof6xfe1bWvlAJ369idOicXTq7B81czbszl6Qk8o2nbs81HPyNX3MJ8_J7O3pZXI_SwomRJ8olIILEJZLbkvFZaVEqVOlFC8lRgYXmSwUF5JpXmJWSc04ppV2cZ-C5ufkZn93E_z34LrerPwQ2vjSMKUyRJSpiBTsqSL4rguuMptQr23YGgSzM2miSbMzaQ4mY-R6H6mdc_-41lxDxvgviahuIg</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Bai, Yan</creator><creator>Jiao, Jile</creator><creator>Lou, Yihang</creator><creator>Wu, Shengsen</creator><creator>Liu, Jun</creator><creator>Feng, Xuetao</creator><creator>Duan, Ling-Yu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4491-2023</orcidid><orcidid>https://orcid.org/0000-0002-2152-9611</orcidid><orcidid>https://orcid.org/0000-0002-4365-4165</orcidid><orcidid>https://orcid.org/0000-0003-2644-717X</orcidid><orcidid>https://orcid.org/0000-0002-8143-389X</orcidid></search><sort><creationdate>20230101</creationdate><title>Dual-Tuning: Joint Prototype Transfer and Structure Regularization for Compatible Feature Learning</title><author>Bai, Yan ; Jiao, Jile ; Lou, Yihang ; Wu, Shengsen ; Liu, Jun ; Feng, Xuetao ; Duan, Ling-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-81643404a363ad836f84d958883d61c241b76c8346293d17f692315f9eb765093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Compatibility</topic><topic>Compatible feature learning</topic><topic>Datasets</topic><topic>Face recognition</topic><topic>Faces</topic><topic>Feature extraction</topic><topic>Global optimization</topic><topic>Optimization</topic><topic>Outliers (statistics)</topic><topic>prototype transfer</topic><topic>Prototypes</topic><topic>Regularization</topic><topic>structure regularization</topic><topic>Training</topic><topic>Tuning</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Yan</creatorcontrib><creatorcontrib>Jiao, Jile</creatorcontrib><creatorcontrib>Lou, Yihang</creatorcontrib><creatorcontrib>Wu, Shengsen</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Feng, Xuetao</creatorcontrib><creatorcontrib>Duan, Ling-Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bai, Yan</au><au>Jiao, Jile</au><au>Lou, Yihang</au><au>Wu, Shengsen</au><au>Liu, Jun</au><au>Feng, Xuetao</au><au>Duan, Ling-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-Tuning: Joint Prototype Transfer and Structure Regularization for Compatible Feature Learning</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>25</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Visual retrieval system faces frequent model update and deployment. It is a heavy workload to re-extract features of the whole database every time. Feature compatibility enables the learned new visual features to be directly compared with the old features stored in the database. In this way, when updating the deployed model, we can bypass the inflexible and time-consuming feature re-extraction process. However, the old feature space that needs to be compatible is not ideal and faces outlier samples. Besides, the new and old models may be supervised by different losses, which will further causes distribution discrepancy problem between these two feature spaces. In this work, we propose a global optimization Dual-Tuning method to obtain feature compatibility against different networks and losses. A feature-level prototype loss is proposed to explicitly align two types of embedding features, by transferring global prototype information. Furthermore, we design a component-level mutual structural regularization to implicitly optimize the feature intrinsic structure. Experiments are conducted on six datasets, including person ReID datasets, face recognition datasets, and million-scale ImageNet and Place365. Experimental results demonstrate that our Dual-Tuning is able to obtain feature compatibility without sacrificing performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2022.3219680</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4491-2023</orcidid><orcidid>https://orcid.org/0000-0002-2152-9611</orcidid><orcidid>https://orcid.org/0000-0002-4365-4165</orcidid><orcidid>https://orcid.org/0000-0003-2644-717X</orcidid><orcidid>https://orcid.org/0000-0002-8143-389X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2023-01, Vol.25, p.1-13 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_ieee_primary_9939072 |
source | IEEE Electronic Library (IEL) |
subjects | Compatibility Compatible feature learning Datasets Face recognition Faces Feature extraction Global optimization Optimization Outliers (statistics) prototype transfer Prototypes Regularization structure regularization Training Tuning Visualization |
title | Dual-Tuning: Joint Prototype Transfer and Structure Regularization for Compatible Feature Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-Tuning:%20Joint%20Prototype%20Transfer%20and%20Structure%20Regularization%20for%20Compatible%20Feature%20Learning&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Bai,%20Yan&rft.date=2023-01-01&rft.volume=25&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2022.3219680&rft_dat=%3Cproquest_RIE%3E2887111654%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887111654&rft_id=info:pmid/&rft_ieee_id=9939072&rfr_iscdi=true |