RRAM Based Energy Efficient Scalable Integrate & Fire Neuron with Built-in Reset Circuit

In this article, we propose a Resistive Random Access Memory (RRAM) based self-resetting Integrate and Fire (I&F) neuron. The proposed neuron circuit does not require any external bias voltage and the integration of control unit required to reset RRAM into neuron circuit optimizes its overall po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2023-03, Vol.70 (3), p.1-1
Hauptverfasser: Dongre, Ashvinikumar, Trivedi, Gaurav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 3
container_start_page 1
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 70
creator Dongre, Ashvinikumar
Trivedi, Gaurav
description In this article, we propose a Resistive Random Access Memory (RRAM) based self-resetting Integrate and Fire (I&F) neuron. The proposed neuron circuit does not require any external bias voltage and the integration of control unit required to reset RRAM into neuron circuit optimizes its overall power consumption. The neuron circuit proposed in this paper consists of two RRAMs for integrate and fire operations, whereas, pulse propogation and reset circuit consists of 22 CMOS transistors. It consumes 1.5 fJ per spike, which is 48% and 53% less than the recent neurons designed using, nanoscale FBFET and PDSOI-MOSFET, respectively. The operating frequency of proposed neuron ranges from 277 KHz to 03 MHz, which is at least 7.5% and 10% higher than the operating frequencies of above mentioned recent neurons, respectively. The inclusion of reset circuit into RRAM based neuron circuit enables the implementation of large scale spiking neural network (SNN), which makes it superior in terms of power and energy consumption.
doi_str_mv 10.1109/TCSII.2022.3219203
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9936701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9936701</ieee_id><sourcerecordid>2784633194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-673ebd214da67246251805bf30f23d4c5034aa818ac2f2b41eaf7fe321880d913</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhoMoWKt_QC8LgrfU_Uo2e2xLq4Gq0FbwtmyS2bolJnV3g_Tfm9riaebwPu8wTxTdEjwiBMvH9XSV5yOKKR0xSiTF7CwakCTJYiYkOT_sXMZCcHEZXXm_xZhKzOgg-lguxy9ooj1UaNaA2-zRzBhbWmgCWpW61kUNKG8CbJwOgB7Q3DpAr9C5tkE_NnyiSWfrENsGLcFDQFPrys6G6-jC6NrDzWkOo_f5bD19jhdvT_l0vIhLKpMQp4JBUVHCK50KylOakAwnhWHYUFbxMsGMa52RTJfU0IIT0EYY6J_MMlxJwobR_bF359rvDnxQ27ZzTX9SUZHxlDEieZ-ix1TpWu8dGLVz9ku7vSJYHQyqP4PqYFCdDPbQ3RGyAPAPSMlSgQn7Ba3TarU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784633194</pqid></control><display><type>article</type><title>RRAM Based Energy Efficient Scalable Integrate &amp; Fire Neuron with Built-in Reset Circuit</title><source>IEEE Electronic Library (IEL)</source><creator>Dongre, Ashvinikumar ; Trivedi, Gaurav</creator><creatorcontrib>Dongre, Ashvinikumar ; Trivedi, Gaurav</creatorcontrib><description>In this article, we propose a Resistive Random Access Memory (RRAM) based self-resetting Integrate and Fire (I&amp;F) neuron. The proposed neuron circuit does not require any external bias voltage and the integration of control unit required to reset RRAM into neuron circuit optimizes its overall power consumption. The neuron circuit proposed in this paper consists of two RRAMs for integrate and fire operations, whereas, pulse propogation and reset circuit consists of 22 CMOS transistors. It consumes 1.5 fJ per spike, which is 48% and 53% less than the recent neurons designed using, nanoscale FBFET and PDSOI-MOSFET, respectively. The operating frequency of proposed neuron ranges from 277 KHz to 03 MHz, which is at least 7.5% and 10% higher than the operating frequencies of above mentioned recent neurons, respectively. The inclusion of reset circuit into RRAM based neuron circuit enables the implementation of large scale spiking neural network (SNN), which makes it superior in terms of power and energy consumption.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2022.3219203</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuits ; Electric potential ; Electrodes ; Energy consumption ; Immune system ; Integrate &amp; Fire Neuron ; Neural networks ; Neuromorphic Computing ; Neurons ; Power consumption ; Random access memory ; RRAM ; Spiking Neural Network ; Synapses ; Transistors ; Voltage</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2023-03, Vol.70 (3), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-673ebd214da67246251805bf30f23d4c5034aa818ac2f2b41eaf7fe321880d913</citedby><cites>FETCH-LOGICAL-c295t-673ebd214da67246251805bf30f23d4c5034aa818ac2f2b41eaf7fe321880d913</cites><orcidid>0000-0003-2189-3656 ; 0000-0002-4592-8078</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9936701$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9936701$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dongre, Ashvinikumar</creatorcontrib><creatorcontrib>Trivedi, Gaurav</creatorcontrib><title>RRAM Based Energy Efficient Scalable Integrate &amp; Fire Neuron with Built-in Reset Circuit</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>In this article, we propose a Resistive Random Access Memory (RRAM) based self-resetting Integrate and Fire (I&amp;F) neuron. The proposed neuron circuit does not require any external bias voltage and the integration of control unit required to reset RRAM into neuron circuit optimizes its overall power consumption. The neuron circuit proposed in this paper consists of two RRAMs for integrate and fire operations, whereas, pulse propogation and reset circuit consists of 22 CMOS transistors. It consumes 1.5 fJ per spike, which is 48% and 53% less than the recent neurons designed using, nanoscale FBFET and PDSOI-MOSFET, respectively. The operating frequency of proposed neuron ranges from 277 KHz to 03 MHz, which is at least 7.5% and 10% higher than the operating frequencies of above mentioned recent neurons, respectively. The inclusion of reset circuit into RRAM based neuron circuit enables the implementation of large scale spiking neural network (SNN), which makes it superior in terms of power and energy consumption.</description><subject>Circuits</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Energy consumption</subject><subject>Immune system</subject><subject>Integrate &amp; Fire Neuron</subject><subject>Neural networks</subject><subject>Neuromorphic Computing</subject><subject>Neurons</subject><subject>Power consumption</subject><subject>Random access memory</subject><subject>RRAM</subject><subject>Spiking Neural Network</subject><subject>Synapses</subject><subject>Transistors</subject><subject>Voltage</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhoMoWKt_QC8LgrfU_Uo2e2xLq4Gq0FbwtmyS2bolJnV3g_Tfm9riaebwPu8wTxTdEjwiBMvH9XSV5yOKKR0xSiTF7CwakCTJYiYkOT_sXMZCcHEZXXm_xZhKzOgg-lguxy9ooj1UaNaA2-zRzBhbWmgCWpW61kUNKG8CbJwOgB7Q3DpAr9C5tkE_NnyiSWfrENsGLcFDQFPrys6G6-jC6NrDzWkOo_f5bD19jhdvT_l0vIhLKpMQp4JBUVHCK50KylOakAwnhWHYUFbxMsGMa52RTJfU0IIT0EYY6J_MMlxJwobR_bF359rvDnxQ27ZzTX9SUZHxlDEieZ-ix1TpWu8dGLVz9ku7vSJYHQyqP4PqYFCdDPbQ3RGyAPAPSMlSgQn7Ba3TarU</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Dongre, Ashvinikumar</creator><creator>Trivedi, Gaurav</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2189-3656</orcidid><orcidid>https://orcid.org/0000-0002-4592-8078</orcidid></search><sort><creationdate>20230301</creationdate><title>RRAM Based Energy Efficient Scalable Integrate &amp; Fire Neuron with Built-in Reset Circuit</title><author>Dongre, Ashvinikumar ; Trivedi, Gaurav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-673ebd214da67246251805bf30f23d4c5034aa818ac2f2b41eaf7fe321880d913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Circuits</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Energy consumption</topic><topic>Immune system</topic><topic>Integrate &amp; Fire Neuron</topic><topic>Neural networks</topic><topic>Neuromorphic Computing</topic><topic>Neurons</topic><topic>Power consumption</topic><topic>Random access memory</topic><topic>RRAM</topic><topic>Spiking Neural Network</topic><topic>Synapses</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dongre, Ashvinikumar</creatorcontrib><creatorcontrib>Trivedi, Gaurav</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dongre, Ashvinikumar</au><au>Trivedi, Gaurav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RRAM Based Energy Efficient Scalable Integrate &amp; Fire Neuron with Built-in Reset Circuit</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>70</volume><issue>3</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract>In this article, we propose a Resistive Random Access Memory (RRAM) based self-resetting Integrate and Fire (I&amp;F) neuron. The proposed neuron circuit does not require any external bias voltage and the integration of control unit required to reset RRAM into neuron circuit optimizes its overall power consumption. The neuron circuit proposed in this paper consists of two RRAMs for integrate and fire operations, whereas, pulse propogation and reset circuit consists of 22 CMOS transistors. It consumes 1.5 fJ per spike, which is 48% and 53% less than the recent neurons designed using, nanoscale FBFET and PDSOI-MOSFET, respectively. The operating frequency of proposed neuron ranges from 277 KHz to 03 MHz, which is at least 7.5% and 10% higher than the operating frequencies of above mentioned recent neurons, respectively. The inclusion of reset circuit into RRAM based neuron circuit enables the implementation of large scale spiking neural network (SNN), which makes it superior in terms of power and energy consumption.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2022.3219203</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2189-3656</orcidid><orcidid>https://orcid.org/0000-0002-4592-8078</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2023-03, Vol.70 (3), p.1-1
issn 1549-7747
1558-3791
language eng
recordid cdi_ieee_primary_9936701
source IEEE Electronic Library (IEL)
subjects Circuits
Electric potential
Electrodes
Energy consumption
Immune system
Integrate & Fire Neuron
Neural networks
Neuromorphic Computing
Neurons
Power consumption
Random access memory
RRAM
Spiking Neural Network
Synapses
Transistors
Voltage
title RRAM Based Energy Efficient Scalable Integrate & Fire Neuron with Built-in Reset Circuit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A30%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RRAM%20Based%20Energy%20Efficient%20Scalable%20Integrate%20&%20Fire%20Neuron%20with%20Built-in%20Reset%20Circuit&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Dongre,%20Ashvinikumar&rft.date=2023-03-01&rft.volume=70&rft.issue=3&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2022.3219203&rft_dat=%3Cproquest_RIE%3E2784633194%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784633194&rft_id=info:pmid/&rft_ieee_id=9936701&rfr_iscdi=true